Thermal Energy Audit

September 20 2019

Sponsored by

Plainfield Fire Department

1260 NH 12A

Plainfield, NH

Audit Prepared by

Table of Contents

Introduction	3
Executive Summary	3-5
Historic Energy Usage	6
Schematic Diagrams	7
Blower Door Test Results	8-9
Thermographic Images and Narrative	10-12
Existing Heating Equipment	13
Energy Audit Software Report	14-25
Load Calculation Report for Existing Conditions	26-31
Load Calc Report After Improved Envelope	32-38
Conversion to Heat Pump SOW	39-72

Introduction

This Energy Audit has been paid for by Eversource as part of their energy efficiency program. Funding may also be available to help reduce electric energy usage through weatherization efforts.

The purpose of an energy audit is to identify energy saving measures (ESM) in a building. Computer simulated and other energy models were developed for this project using multiple strategies and software. The models estimate predicted future energy consumption based on the local climate conditions, physical dimensions and characteristics of a building, mechanical systems, presumed lighting, equipment, and occupancy patterns, in addition to a number of other variables.

With the building modeled in existing conditions, energy savings can be estimated for improvements to the thermal envelope. The cost of those measures can then be analyzed in terms of predicted energy saved. The primary objective of an energy audit is to evaluate the level of investment warranted by energy and dollars saved from those specific measures. In many cases, improving the envelope can be expected to improve occupant comfort and reduce or eliminate ice dams. These non-energy saving benefits can reduce maintenance costs while also addressing health and safety concerns.

This audit has been prepared with the best of intentions to assist the Town of Plainfield make informed decisions regarding improvements to their Fire Station. We do not make any warranty, expressed or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed.

Executive Summary

The Plainfield Fire Station (PFS) is located at 12 NH12A in Plainfield, NH. It is in cold climate zone 6 climate with an approximate average 7480 heating degree days (from weather data for Lebanon, NH). The building is at an approximate elevation of 493 feet above sea level.

The one story, slab on grade, steel framed building has three truck bays, a 30x43 meeting room, fully equipped kitchen, two offices, two restrooms with showers, server room, laundry and storage areas. As often the case with steel framed buildings, the wall purlins and roof structure are wrapped with fiberglass batts. A suspended ceiling hangs over all but the truck bays. It is heated by hydronic baseboards and (3) Modine units, from a twenty year old oil fired Weil McLean boiler.

The site visit for this Study occurred on June 12, 2019 and included a blower door test and thermographic scans, though the temperature difference between inside and outside was minimal for good IR imaging.

The six recommended ESM are presented in a chart on the next page. In summary: investing \$4,345 in energy saving measures could be expected to save \$507 annually in energy costs based on 2018 prices and 22.3 MMBTUs of site energy each year. Over the life of the measures, this would result in an investment gain of \$4,781 and an annualized return on investment (ROI) of 4.2% per year for an averaged 18 years. Envelope improvements would also reduce the heating load which could reduce costs for installing air source heat pumps.

It is possible that the energy savings will pass the threshold for an Eversource rebate, in which case up to \$2,173 in rebates could be available after the project is completed as described.

#	Energy Saving Measures	Cost Of Measure	Annual \$ Savings	Gal Oil Saved	MMBtu Energy Savings	Simple Payback Years	Life of Measure	LofM Savings	Invest- ment Gain	ROI	Annual ROI
	Weather-strip										
1	Ext doors	\$115	\$11	4	0.6	10.5	12	\$132	\$17	14.8%	1.2%
	Damper on Vent										
2	Hood	\$165	\$45	17	2.3	3.7	25	\$1,125	\$ 960	581.8%	8.0%
	Insulate HW pipes										
3	in Bays	\$365	\$36	14	1.9	10.1	25	\$900	\$535	146.6%	3.7%
4	Replace Refrigerator	\$600	\$73	0	1.4	8.2	12	\$876	\$276	46.0%	3.2%
5	Air Seal all wall gaps	\$1,150	\$145	55	7.5	7.9	25	\$3,625	\$2,475	215.2%	4.7%
	Seal Overhead										
6	Doors	\$1,950	\$197	74	10.3	9.9	12	\$2,364	\$414	21.2%	1.6%
	TESM Totals	\$4,345	\$507	163	22.6	8.6	18	\$9,022	\$4,781	110.0%	4.2%
1-6	All Six ESMs With Eversource Rebate, IE APPROVED!	\$2 173	\$507	163	22.6	43	18	\$9.022	\$5 715	263.0%	7 4%

Summary of Energy Saving Envelope Measures

Notes:

- 1. Efforts have been made to air seal both exterior doors, however both could benefit from robust and professional installed weather-stripping gaskets.
- 2. The range hood fan is rarely used and represents a large and ever-present hole in the wall. Several models of hoods or enclosed dampers are available on line with an average cost of \$165.
- 3. This measure is most relevant with the existing heat system as primary or secondary heating.
- 4. Rebates may be available to replace the existing refrigerator with a new Energy Star model.
- 5. Costs for labor comprehensive air sealing at all gaps and cracks between sheetrock and where steel framing penetrates the sheetrock have been estimated based on previous projects by air sealing specialists. Please understand that these efforts are often omitted from proposals in order to offer a low bid and yet it is the lack of a continuous air barrier which results in ice formations and a significant factor in high energy consumption.
- 6. Large gaps around the perimeter of the overhead doors result in significant heat loss. While the doors are opened throughout the day, the amount of time they are closed far exceeds the time they are open, so reducing air leakage when they are closed is a top priority. Robust weather-stripping is available from American Garage Door Supply. To prevent damage to the tracks when wide plows drive in and out, install four foot high angle irons—also available from AGDS—on the exterior of the door track on any vulnerable bay door.

An additional outcome for completing all six ESM would be a reduced building heating load of 13,675 Btus per hour at design load. While this reduction would likely not impact the selection (or cost) of a new boiler, it could result in a smaller heat pump, by as much as one ton.

Summary of Energy Saving HVAC Options

Design Day Mechanicals (DDM inc) has developed three Options to replace the oil fired boiler with electric powered heat pumps. All three options would include summer cooling. A full Scope of Work to solicit Design Build Proposals is included at the end of this report.

The three system options, with estimated equipment only costs, can be summarized as:

- High Efficiency Air Source Heat Pumps (HE-ASHP) with Second Stage Electric Resistance Heat. Budget \$21,000 for equipment.
- Code Minimum Air Source Heat Pumps (ASHP) with Second Stage Electric Resistance Heat. Budget \$13,000 for equipment.
- 3. Water Source Heat Pump System (AKA Ground Source Heat Pump or GSHP or Geothermal) Budget \$17,000 for equipment and \$37,000 for Geothermal Borehole. No second stage is required.

The predicted estimate for future heating costs and savings from existing annual heating costs is summarized below. All costs are based on current energy prices.

		Annual Savings from
	Annual Heating Costs	Existing Heating Costs
Existing	\$3,783.00	n/a
Improved Envelope	\$3,276.00	\$507.00
HE ASHP	\$2,809.00	\$974.00
Code Min ASHP	\$3,107.00	\$676.00
GSHP	\$2,086.00	\$1,697.00

Eversource rebates, as a per ton dollar sum, may be available for both the HE ASHP and GSHP, due to their higher efficiencies.

A cost benefit analysis cannot be offered since installed costs are not known at this time.

Existing Energy Use Analysis

Energy	Units	Site Btus	Source Btus	\$Cost
Electric kWh	6,149	20,980,388	69,858,789	\$1,470
#2 Oil	1,397	193,484,500	222,507,175	\$3,716
Totals		214,464,888	292,365,964	\$5,186
EUI KBtu/FT2	4624	46.4	63.2	\$1.12

The energy analysis below reflects a two calendar year average (2017 and 2018) based energy data provided for

The Energy Utilization Index (EUI) offers a simple snapshot analysis of a building's energy use by looking at total amount of energy input (converted to Btu's) divided by the floor area of conditioned space. "Site Energy" refers to units of energy delivered to a site. Source energy includes transmission and some allowance for off site generation and other considerations. Source energy is used to equal the playing field when comparing electrical consumption with on site combustion fuel energy and to better reflect GHG emissions when considering off site generation.

Based on the information provided, the PFS EUI is 46.4 KBtu/ft2 at a cost of \$1.12per sq ft in 2018 energy prices.

Schematic Floor Plan

Air Leakage and Blower Door Tests

Uncontrolled air infiltration—and exfiltration—can account for up to 35% of a building's heat loss and heating bill and is often the cause of discomfort. (Think drafty old buildings or new windows!) Since air can carry a lot of water vapor with it, air leakage through the exterior of a building can also contribute to moisture problems such as mold and rot in walls and roofs or ceilings. Fiberglass batts in particular are vulnerable to air movement which can diminish its insulating properties by 50-75%. Finally, icicles and ice dams are most often the result of warm, conditioned air rising up though gaps in the ceiling and warming the under side of a roof and melting the snow from below. Melt water then runs down to the edge of the roof where it freezes when exposed to air. For all these reasons, limiting air infiltration is often at the top of the list to conserve energy, improve comfort, and reduce roof damage and other moisture problems.

The 'blower door' (far left) consists of an adjustable frame which mounts in an exterior doorway, a nylon "skirt" that is stretched over the frame to stop air except for a hole at the bottom in which a fan is placed. The fan is capable of moving up to about 6,000 cubic feet of air per minute. Plastic tubes are used as "pressure taps" and are attached to the pressure gauge (left) to measure both the amount of air pulled through the fan and the pressure difference between inside and outside.

Make it Tight, Ventilate Right.

Blower Door Test Results for the Fire Station: 6568 CFM50 Estimated The results are estimated because the fan could not achieve a -50 pascal pressure differential between inside and outside. The actual test result was 5330CFM35, which is not a standardized result, so math was used to estimate the "CFM50" ie cubic feet of air per minute at -50 pascals.

This means that the fan would pull 6568 cubic feet of air per minute to achieve –50 pascals pressure difference between inside and outside. Based on a building volume estimate of **82,240 cubic feet**, 6568CFM50 means that at –50 pascals, the indoor air would exchange with outdoor air **4.79times per hour**, referred to as **4.79ACH50**. Since the blower door assembly creates an unnatural condition, we can only estimate the average air infiltration rate under varying but normal conditions. In your case, it is estimated that the air exchanges an average of **0.5 times an hour in the winter**.

Estimated summer infiltration is 0.32ACH under natural conditions, with an annual estimated average of 0.38ACH. While these estimates have limited value in terms of adequate outside air exchange, it does suggest that large groups of people for more than an hour or so may find it getting quite stuffy,

The next two pages attempt to compare building air tightness levels—or put tightness into the context of the existing building inventory and where we are headed.

Building owners (and architects and builders) frequently ask me if their building is tight and I find it hard to give them a satisfying answer. In truth, air tightness is relative and the mathematical description of a building's air barrier or level of tightness has little meaning at best – and can be incredibly boring at worst. I once attempted humor with "well, if it were a submarine, everyone would drown" but, while accurate, proved less than helpful. So this graphic has been developed in an attempt to explain the spectrum of tightness in terms of existing buildings and the direction we're headed in terms of codes and standards. The tighter the building, the less air infiltration, and therefore heat loss, in the winter – which means less energy needed to run your equipment.

de-

1

O ACH

"ACH50" or Air Changes per Hour at -50 pascals, means the number of times the indoor conditioned air will exchange with outdoor air within one hour when the building is under -50 pascals of pressure. This is a standardized testing condition, using a blower door fan assembly. One can *estimate* the air exchange rate under natural conditions by dividing by 15. Colored boxes above are generalized zones for this discussion only.

"When is it so tight we need mechanical ventilation?"

"Beer cooler tight" no doors or windows

A common response to the 'tightness' discussion is that "buildings can be too tight: they need to breathe". The truth is that people need to breathe – buildings just need to be able to dry. Very high air leakage allowed buildings (wall and roof assemblies, etc.) to dry out if they got wet. But it takes tremendous amounts of energy to maintain comfortable indoor temperatures with so much air leakage. So the answer is: buildings *cannot be too tight*, and in fact must become as tight as we can make them, as long as they are designed to be able to dry out and as long as we provide mechanical ventilation when necessary so that people have enough fresh (or filtered) air to breathe. The various yellow shaded boxes above categorizes, in very general terms, when mechanical ventilation might be needed. There are a number of factors to consider when determining specific ventilation requirements – either by code or specific occupancy realties.

°F

65.3

78.4

Contrast for IR images isn't ideal, but horizontal lines along the wall indicate the metal purlins of the metal structure. Dark 'coolth' along the door edges show air leakage, despite valiant efforts for foam strip weather-strips.

Air sealing all gaps and cracks along the wall and wall/ceiling transition is included in the ESM #

Roof and Wall Thermal Barriers

The photos below (courtesy of Brad) show taped and spackled sheetrock under the roof decking—and potentially above the steel framing. This suggests a potentially effective air barrier in contact with the fiberglass typically draping steel building framing.

An effective thermal envelope—ie the control layers which separate inside conditioned space with the outside weather and climate— has a continuous air barrier in direct contact with the insulation layers. Again, for insulation to slow heat transfer as intended, it must be in contact with an air barrier on all six sides. So the taped sheet rock defines the thermal barrier and if it is properly sealed as the above image suggests, then it is located exactly where it is supposed to be!

The walls, however, have a number of large gaps where air movement happens, causing convection within the thermal layer, as well as vapor migration to the outside cold metal.

There are good reasons to also effect a continuous air barrier where the wall and the ceiling plane meet (below).

A simple \$20 damper may be adequate for immediate use, however replacing the hood is a more effective long term measure to reduce heat loss.

Refrigerator efficiencies have improved greatly since 2004 even though, candidly, ever since warranty periods have been reduced from 10 years to 3 or 5, the compressors are built to last 15 years.

Daylight is evident around most of the overhead door edges.

Existing Boiler

Peerless Oil Boiler Model EC(T)-06-275m/S Manufactured December 1999 DOE Output 321KBtu/Hr Net IBR 279KBtu/Hr

PEERLESS					
OIL	AST IRON BOILERS				
BOILER No.	EC(T)-06-275W/S				
SERIAL No.	EC-023587-1299				
IBR BURNER CAPACITY	2.75 GAL./HR. LT. OIL				
D.O.E. HTG. CAPAC GROSS OUTPU	ITY OR 321000 WATER				
NET	321000 STEAM				
IBR	241000 B.T.U./HR. STEAM 279000 B.T.U./HR. WATER				

Domestic hot water for the bathrooms, kitchen, and laundry is provided by an indirect water heater off the boiler. If converting to heat pumps for heating and the boiler is removed, consider a smaller and super insulated electric hot water tank.

for

Eversource.Plainfield

Plainfield NH 03781

Prepared By:

Margaret Dillon S.E.E.D.S.

September 9, 2019

Project Summary

General Project Informa	tion		
Project Title: Project Date: Client Name: Client City:	Plainfield Fire Station Thursday, August 15, 2019 Eversource.Plainfield Plainfield NH 03781	Company Name: Company Rep: Company E-Mail Address:	S.E.E.D.S. Margaret Dillon mdillon@myfairpoint.net
Design Data			
Building Area: People: Occupancy:	4,704 sq.ft.	Heating Load: Loads Adj. Factor: AC On Temp.:	110,286 Btuh .51 °F
Actual City: Weather Ref. City:	Lebanon, New Hampshire Concord, New Hampshire		
Summer Outdoor: Summer Indoor: Cooling Hours:	87 °F 75 °F 775	Winter Outdoor: Winter Indoor: Degree Days:	-3 °F 68 °F 6,500

Annual Operating Cost Estimate

	Fuel	Total	Total	Annual	Total	Average
System	Rates	Heating	Cooling	Service	Oper.	Monthly
Description	Set	Cost	Cost	Charges	Cost	Cost
Existing	1	\$3,783	\$	\$	\$3,783	\$315
Envelope Improvements	1	\$3,276	\$	\$	\$3,276	\$273
High Eff Air Source Heat Pumps	1	\$2,809	\$	\$	\$2,809	\$234
Code Miniomum Air Source Heat Pumps	1	\$3,107	\$	\$	\$3,107	\$259
Ground Source Heat Pumps	1	\$2,086	\$	\$	\$2,086	\$174

Input Data - System 1 - Existing

Estimated Cost

Cooling		
System Type:	Standard Air Conditioner	
Model:		
Efficiency:	.00	
Capacity:	Btuh	
Cooling Load:	Btuh	
Annual Cost (Spec Cooling Hours Method):		\$.00
Heating		
System Type:	Fuel Oil Boiler	
Model:		
Efficiency:	85 AFUE	
Capacity:	321,000 Btuh	\$2,459.17
Oversize Penalty:	1.35	\$1,324.17
Heating Load:	110,286 Btuh	
Annual Cost (Degree Days Method):		\$3,783.33
Total Cost		
Total Annual Operating Cost:		\$3,783.33

16

Input Data - System 2 - Envelope Improvements

Estimated Cost

Cooling		
System Type:	Standard Air Conditioner	
Model:		
Efficiency:	.00	
Capacity:	Btuh	
Cooling Load:	Btuh	
Annual Cost (Spec Cooling Hours Method):		\$.00
Heating		
System Type:	Fuel Oil Boiler	
Model:		
Efficiency:	85 AFUE	
Capacity:	321,000 Btuh	\$2,129.21
Oversize Penalty:	1.35	\$1,146.50
Heating Load:	96,612 Btuh	
Annual Cost (Degree Days Method):		\$3,275.71
Total Cost		
Total Annual Operating Cost:		\$3,275.71

Input Data - System 3 - High Eff Air Source Heat Pumps

		Estimated Cost
Cooling		
Svstem Type:	Air Source Heat Pump	
Model:		
Efficiency:	.00	
Capacity:	Btuh	
Cooling Load:	Btuh	
Annual Cost (Bin Data Method):		\$.00
Heating		
System Type:	Air Source Heat Pump	
Model:		
Efficiency:	9 HSPF	
Capacity:	96,612 Btuh	
Heating Load:	96,612 Btuh	
47° Capacity:	96,612 Btuh	
	96,612 Btuh	
47° COP:	3.8	
17° COP. Canacity Balance Point:	2.0 _3 °E	
Cutoff Temperature:	-5 °F	
Annual Cost (Bin Data Method):	0 1	\$2,682.47
Васкир		
System Type:	Electric Resistance	
	100.00	
Capacity:	30 KVV	¢126.09
Annual Cost.		φ120.90
Total Cost		
Total Annual Operating Cost:		\$2,809.45

Input Data - System 4 - Code Miniomum Air Source Heat Pumps

		Estimated Cost
Cooling		
System Type:	Air Source Heat Pump	
Model:		
Efficiency:	.00	
Capacity:	Btuh	
Cooling Load: Appual Coat (Pin Data Mathad):	Btun	ሮ
Alfinual Cost (Birl Data Method).		φ.00
Heating		
System Type:	Air Source Heat Pump	
Model:		
Efficiency:	8.2 HSPF	
Capacity:	96,612 Btuh	
Heating Load:	96,612 Btuh	
47° Capacity:	90,012 Btun	
	00,000 Bluii 3 7	
47° COP:	2.46	
Capacity Balance Point:	2.40 20 °F	
Cutoff Temperature:	-5 °F	
Annual Cost (Bin Data Method):		\$2,921.29
Backup		
System Type:	Electric Resistance	
Efficiency:	100.00	
Capacity:	30 kW	
Annual Cost:		\$186.18
Total Cost		
Total Annual Operating Cost:		\$3,107.47

Input Data - System 5 - Ground Source Heat Pumps

		Estimated Cost
Cooling		
System Type: Model:	Ground Source Heat Pump	
Efficiency:	.00	
Capacity:	Btuh	
Cooling Load:	Btuh	¢ 00
Annual Cost (Bin Data Method):		\$.00
Heating		
System Type: Model:	Ground Source Heat Pump	
Efficiency:	4.13 COP	
Capacity:	96,612 Btuh	
Heating Load:	96,612 Btuh	
47° Capacity:	96,612 Btuh	
17° Capacity:	96,612 Btuh	
47° COP:	3.8	
17° COP:	2.8	
Capacity Balance Point:	-3 °F	
Appual Cost (Bin Data Mathod):	-99 F	¢2 085 81
Annual Cost (bin Data Method).		φ2,003.01
Backup		
System Type:	Electric Resistance	
Efficiency:	100.00	
Capacity:	30 kW	
Annual Cost:		\$.00
Total Cost		
Total Annual Operating Cost:		\$2,085.81

Monthly Costs - System 1 - Existing

Monthly System Cost

	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$.00	0.0%	\$680.52	100.0%	\$680.52
February	\$.00	0.0%	\$570.45	100.0%	\$570.45
March	\$.00	0.0%	\$515.23	100.0%	\$515.23
April	\$.00	0.0%	\$298.38	100.0%	\$298.38
May	\$.00	0.0%	\$153.35	100.0%	\$153.35
June	\$.00	0.0%	\$63.71	100.0%	\$63.71
July	\$.00	0.0%	\$27.31	100.0%	\$27.31
August	\$.00	0.0%	\$56.71	100.0%	\$56.71
September	\$.00	0.0%	\$121.23	100.0%	\$121.23
October	\$.00	0.0%	\$250.35	100.0%	\$250.35
November	\$.00	0.0%	\$399.94	100.0%	\$399.94
December	\$.00	0.0%	\$646.16	100.0%	\$646.16
Total	\$.00	0.0%	\$3,783.33	100.0%	\$3,783.33

Monthly Fuel Usage and Cost									
	Electi	ricity	Natura	Natural Gas		Propane		Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons	
January	\$.00	.0	\$.00	.0	\$.00	.0	\$680.52	255.8	
February	\$.00	.0	\$.00	.0	\$.00	.0	\$570.45	214.5	
March	\$.00	.0	\$.00	.0	\$.00	.0	\$515.23	193.7	
April	\$.00	.0	\$.00	.0	\$.00	.0	\$298.38	112.2	
May	\$.00	.0	\$.00	.0	\$.00	.0	\$153.35	57.7	
June	\$.00	.0	\$.00	.0	\$.00	.0	\$63.71	24.0	
July	\$.00	.0	\$.00	.0	\$.00	.0	\$27.31	10.3	
August	\$.00	.0	\$.00	.0	\$.00	.0	\$56.71	21.3	
September	\$.00	.0	\$.00	.0	\$.00	.0	\$121.23	45.6	
October	\$.00	.0	\$.00	.0	\$.00	.0	\$250.35	94.1	
November	\$.00	.0	\$.00	.0	\$.00	.0	\$399.94	150.4	
December	\$.00	.0	\$.00	.0	\$.00	.0	\$646.16	242.9	
Total	\$.00	.0	\$.00	.0	\$.00	.0	\$3,783.33	1,422.3	

Average Fuel Oil Cost Per Gallon:
Total annual cooling load energy:
Total annual heating load energy:

\$2.660/Gallon BTU 242,318,528 BTU

Monthly Costs - System 2 - Envelope Improvements

	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$.00	0.0%	\$589.22	100.0%	\$589.22
February	\$.00	0.0%	\$493.91	100.0%	\$493.91
March	\$.00	0.0%	\$446.10	100.0%	\$446.10
April	\$.00	0.0%	\$258.34	100.0%	\$258.34
May	\$.00	0.0%	\$132.78	100.0%	\$132.78
June	\$.00	0.0%	\$55.16	100.0%	\$55.16
July	\$.00	0.0%	\$23.64	100.0%	\$23.64
August	\$.00	0.0%	\$49.10	100.0%	\$49.10
September	\$.00	0.0%	\$104.96	100.0%	\$104.96
October	\$.00	0.0%	\$216.76	100.0%	\$216.76
November	\$.00	0.0%	\$346.28	100.0%	\$346.28
December	\$.00	0.0%	\$559.46	100.0%	\$559.46
Total	\$.00	0.0%	\$3,275.71	100.0%	\$3,275.71

Monthly Fuel Usage and Cost									
	Elect	ricity	Natura	al Gas	Prop	bane	Fuel Oil		
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons	
January	\$.00	.0	\$.00	.0	\$.00	.0	\$589.22	221.5	
February	\$.00	.0	\$.00	.0	\$.00	.0	\$493.91	185.7	
March	\$.00	.0	\$.00	.0	\$.00	.0	\$446.10	167.7	
April	\$.00	.0	\$.00	.0	\$.00	.0	\$258.34	97.1	
May	\$.00	.0	\$.00	.0	\$.00	.0	\$132.78	49.9	
June	\$.00	.0	\$.00	.0	\$.00	.0	\$55.16	20.7	
July	\$.00	.0	\$.00	.0	\$.00	.0	\$23.64	8.9	
August	\$.00	.0	\$.00	.0	\$.00	.0	\$49.10	18.5	
September	\$.00	.0	\$.00	.0	\$.00	.0	\$104.96	39.5	
October	\$.00	.0	\$.00	.0	\$.00	.0	\$216.76	81.5	
November	\$.00	.0	\$.00	.0	\$.00	.0	\$346.28	130.2	
December	\$.00	.0	\$.00	.0	\$.00	.0	\$559.46	210.3	
Total	\$.00	.0	\$.00	.0	\$.00	.0	\$3,275.71	1,231.5	

Average Fuel Oil Cost Per Gallon:							
Total annual cooling load energy:							
Total annual heating load energy:							

\$2.660/Gallon				
BTU				
212,274,256 BTU				

Monthly Costs - System 3 - High Eff Air Source Heat Pumps

	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$.00	0.0%	\$538.25	100.0%	\$538.25
February	\$.00	0.0%	\$475.41	100.0%	\$475.41
March	\$.00	0.0%	\$359.52	100.0%	\$359.52
April	\$.00	0.0%	\$194.72	100.0%	\$194.72
May	\$.00	0.0%	\$100.22	100.0%	\$100.22
June	\$.00	0.0%	\$43.04	100.0%	\$43.04
July	\$.00	0.0%	\$19.50	100.0%	\$19.50
August	\$.00	0.0%	\$38.81	100.0%	\$38.81
September	\$.00	0.0%	\$81.08	100.0%	\$81.08
October	\$.00	0.0%	\$165.10	100.0%	\$165.10
November	\$.00	0.0%	\$268.66	100.0%	\$268.66
December	\$.00	0.0%	\$525.14	100.0%	\$525.14
Total	\$.00	0.0%	\$2,809.45	100.0%	\$2,809.45

Monthly Fuel Usage and Cost									
	Elect	ricity	Natura	al Gas	Prop	Propane		Fuel Oil	
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons	
January	\$538.25	2,575.3	\$.00	.0	\$.00	.0	\$.00	.0	
February	\$475.41	2,274.7	\$.00	.0	\$.00	.0	\$.00	.0	
March	\$359.52	1,720.2	\$.00	.0	\$.00	.0	\$.00	.0	
April	\$194.72	931.7	\$.00	.0	\$.00	.0	\$.00	.0	
May	\$100.22	479.5	\$.00	.0	\$.00	.0	\$.00	.0	
June	\$43.04	205.9	\$.00	.0	\$.00	.0	\$.00	.0	
July	\$19.50	93.3	\$.00	.0	\$.00	.0	\$.00	.0	
August	\$38.81	185.7	\$.00	.0	\$.00	.0	\$.00	.0	
September	\$81.08	387.9	\$.00	.0	\$.00	.0	\$.00	.0	
October	\$165.10	789.9	\$.00	.0	\$.00	.0	\$.00	.0	
November	\$268.66	1,285.5	\$.00	.0	\$.00	.0	\$.00	.0	
December	\$525.14	2,512.6	\$.00	.0	\$.00	.0	\$.00	.0	
Total	\$2.809.45	13.442.3	\$.00	.0	\$.00	.0	\$.00	.0	

Average Electric Cost Per kWh:	\$.209/kWh
Total annual cooling load energy:	BTU
Total annual heating load energy:	275,831,328 BTU

Monthly Costs - System 4 - Code Miniomum Air Source Heat Pumps

	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$.00	0.0%	\$622.79	100.0%	\$622.79
February	\$.00	0.0%	\$540.50	100.0%	\$540.50
March	\$.00	0.0%	\$390.84	100.0%	\$390.84
April	\$.00	0.0%	\$203.83	100.0%	\$203.83
May	\$.00	0.0%	\$103.06	100.0%	\$103.06
June	\$.00	0.0%	\$43.70	100.0%	\$43.70
July	\$.00	0.0%	\$19.64	100.0%	\$19.64
August	\$.00	0.0%	\$39.42	100.0%	\$39.42
September	\$.00	0.0%	\$83.09	100.0%	\$83.09
October	\$.00	0.0%	\$172.30	100.0%	\$172.30
November	\$.00	0.0%	\$286.38	100.0%	\$286.38
December	\$.00	0.0%	\$601.92	100.0%	\$601.92
Total	\$.00	0.0%	\$3,107.47	100.0%	\$3,107.47

Monthly Fuel Usage and Cost										
	Elect	ricity	Natura	al Gas	Prop	bane	Fue	Fuel Oil		
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons		
January	\$622.79	2,979.8	\$.00	.0	\$.00	.0	\$.00	.0		
February	\$540.50	2,586.1	\$.00	.0	\$.00	.0	\$.00	.0		
March	\$390.84	1,870.0	\$.00	.0	\$.00	.0	\$.00	.0		
April	\$203.83	975.3	\$.00	.0	\$.00	.0	\$.00	.0		
May	\$103.06	493.1	\$.00	.0	\$.00	.0	\$.00	.0		
June	\$43.70	209.1	\$.00	.0	\$.00	.0	\$.00	.0		
July	\$19.64	94.0	\$.00	.0	\$.00	.0	\$.00	.0		
August	\$39.42	188.6	\$.00	.0	\$.00	.0	\$.00	.0		
September	\$83.09	397.6	\$.00	.0	\$.00	.0	\$.00	.0		
October	\$172.30	824.4	\$.00	.0	\$.00	.0	\$.00	.0		
November	\$286.38	1,370.3	\$.00	.0	\$.00	.0	\$.00	.0		
December	\$601.92	2,880.0	\$.00	.0	\$.00	.0	\$.00	.0		
Total	\$3,107.47	14,868.3	\$.00	.0	\$.00	.0	\$.00	.0		

Average Electric Cost Per kWh:	\$.209/kWh
Total annual cooling load energy:	BTU
Total annual heating load energy:	275,831,328 BTU

Monthly Costs - System 5 - Ground Source Heat Pumps

	Cooling		Heating		Total
Month	Cost	%	Cost	%	Cost
January	\$.00	0.0%	\$360.18	100.0%	\$360.18
February	\$.00	0.0%	\$303.41	100.0%	\$303.41
March	\$.00	0.0%	\$278.27	100.0%	\$278.27
April	\$.00	0.0%	\$168.94	100.0%	\$168.94
May	\$.00	0.0%	\$92.35	100.0%	\$92.35
June	\$.00	0.0%	\$41.48	100.0%	\$41.48
July	\$.00	0.0%	\$19.40	100.0%	\$19.40
August	\$.00	0.0%	\$37.42	100.0%	\$37.42
September	\$.00	0.0%	\$75.85	100.0%	\$75.85
October	\$.00	0.0%	\$144.95	100.0%	\$144.95
November	\$.00	0.0%	\$220.41	100.0%	\$220.41
December	\$.00	0.0%	\$343.15	100.0%	\$343.15
Total	\$.00	0.0%	\$2,085.81	100.0%	\$2,085.81

Monthly Fuel Usage and Cost													
	Elect	ricity	Natura	al Gas	Prop	bane	Fuel Oil						
Month	Cost	kWh	Cost	Therm	Cost	Gallons	Cost	Gallons					
January	\$360.18	1,723.4	\$.00	.0	\$.00	.0	\$.00	.0					
February	\$303.41	1,451.7	\$.00	.0	\$.00	.0	\$.00	.0					
March	\$278.27	1,331.5	\$.00	.0	\$.00	.0	\$.00	.0					
April	\$168.94	808.3	\$.00	.0	\$.00	.0	\$.00	.0					
May	\$92.35	441.9	\$.00	.0	\$.00	.0	\$.00	.0					
June	\$41.48	198.5	\$.00	.0	\$.00	.0	\$.00	.0					
July	\$19.40	92.8	\$.00	.0	\$.00	.0	\$.00	.0					
August	\$37.42	179.1	\$.00	.0	\$.00	.0	\$.00	.0					
September	\$75.85	362.9	\$.00	.0	\$.00	.0	\$.00	.0					
October	\$144.95	693.5	\$.00	.0	\$.00	.0	\$.00	.0					
November	\$220.41	1,054.6	\$.00	.0	\$.00	.0	\$.00	.0					
December	\$343.15	1,641.9	\$.00	.0	\$.00	.0	\$.00	.0					
Total	\$2.085.81	9.979.9	\$.00	.0	\$.00	.0	\$.00	.0					

Average Electric Cost Per kWh:	\$.209/kWh
Total annual cooling load energy:	BTU
Total annual heating load energy:	275,831,328 BTU

Plainfield Fire Station HVAC Load Calculations

for

Eversource.Plainfield

Plainfield NH 03781

Existing Conditions

Prepared By:

Margaret Dillon S.E.E.D.S.

September 9, 2019

Rhvac is an ACCA approved Manual J and Manual D computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Commercial HVAC Loads
Doug Waitt
New Ipswich, NH 03071

Elite Software Development, Inc. Plainfield Fire Station Page 2

Project Report

General Project Information	n	
Project Title:	Plainfield Fire Station	
Project Date:	Thursday, August 15, 2019	
Client Name	Eversource Plainfield	
Client City:	Plainfield NH 03781	
Company Name:	SEEDS	
Company Paproportative:	S.L.L.D.S. Margaret Dillon	
Company E-Mail Address:	mailion@myrairpoint.net	
Decign Data		
Design Data	Labaran New Herenshire	
Reference City:	Lebanon, New Hampshire	
Building Orientation:	Front door faces Southeast	
Daily Temperature Range:	Medium	
Latitude:	43 Degrees	
Elevation:	493 ft.	
Altitude Factor:	.982	
Ou	itdoor Outdoor Indoor Indoor (Grains
Dry	<u>/ Bulb Wet Bulb Rel.Hum Rel.Hum Dry Bulb Diffe</u>	rence
Winter:	-3 -3.6 n/a n/a 70	n/a
Summer:	86 69 43% 50% 75	15
Check Figures		
Total Building Supply CFM:	CFM Per Square ft.:	.000 *
Square ft. of Room Area:	4.704 Square ft. Per Ton:	**
Volume (ft ³):	82.240***	
* D	0=,= :0	entire floor area
* Based on area of rooms I	being heated or cooled (whichever governs system) rather than e	
* Based on area of rooms i ** Based on area of rooms	being heated or cooled (whichever governs system) rather than e	
 Based on area of rooms ** Based on area of rooms ***Indicated volume is base 	being heated or cooled (whichever governs system) rather than e being cooled.	
* Based on area of rooms in ** Based on area of rooms ***Indicated volume is base	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume.	
* Based on area of rooms in ** Based on area of rooms ***Indicated volume is base	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume.	
* Based on area of rooms ** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume.	
* Based on area of rooms in ** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. uluding Ventilation Air: 110,287 Btuh 110.287 MBH	
* Based on area of rooms in ** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. uding Ventilation Air: 110,287 Btuh 110.287 MBH	
* Based on area of rooms in ** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Iuding Ventilation Air: 110,287 Btuh 110.287 MBH	
 Based on area of rooms is ** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed 	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D).
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary.).
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactor). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactor). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. I per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. If per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Suding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. If per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. If per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. If per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Uuding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Uuding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
 Based on area of rooms is the second s	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufacte). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Eluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactor). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. Studing Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms in the second secon	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms is ** Based on area of rooms is ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms is ** Based on area of rooms is ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufacte). urer's performance data at
* Based on area of rooms is ** Based on area of rooms is ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. A per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. It meets both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms is ** Based on area of rooms is ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. d per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. it meets both sensible and latent loads according to the manufactu both sensible and latent loads according to the manufactu). urer's performance data at
* Based on area of rooms is ** Based on area of rooms is ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	being heated or cooled (whichever governs system) rather than e being cooled. ed on custom building volume. cluding Ventilation Air: 110,287 Btuh 110.287 MBH ed Manual J and Manual D computer program. 4 per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D stimates as building use and weather may vary. t meets both sensible and latent loads according to the manufactu). urer's performance data at

Rhvac - Residential & Light Comm Doug Waitt	ercial HV	AC Loads	S						Elite	Software D Pla	evelo infield	pment, Inc. Fire Station
New Ipswich, NH 03071	4											Page 3
Miscellaneous Repon												Oreiree
Input Data	en, Offic	es		Outdoor Dry Bulb	Out Wet	door Bulb	Outd Rel.H	loor lum	Indo Rel.Hu	or Inc m Dry E	loor Bulb	Grains Differenc e
Winter: Summer:				-3 86		-3.6 69	8 4	30% 13%	n 50	/a %	70 75	n/a 15.07
System 2 Apparatus Bays		Out	door Bulb	Outdoo	r J	Outdo	or	Inc Rol F	door Hum	Indoo Dry Bull	or b	Grains
Winter: Summer:			-3 86	-3.0 69	5 5 9	80 43	% %	<u>t tot.i</u>	n/a 50%	7(7)	0 5	n/a 15.07
Duct Sizing Inputs												
Main Calculate: Use Schedule: Roughness Factor: .C Pressure Drop: Minimum Velocity: Maximum Velocity: Minimum Height: Maximum Height:	<u>Frunk</u> Yes 90300 .1000 i 0 f 900 f i	n.wg./10 it./min it./min n. n.	0 ft.	Ru	nouts Yes Yes 01000 .1000 0 750	in.wg ft./mir ft./mir in. in.	./100 ft า า	t.				
Outside Air Data												
Infiltration Specified:		<u>Winter</u> .475 651	AC/hr CFM		<u>Sur</u>	n <u>mer</u> .220 302	AC/hr CFM					
Infiltration Actual: Building Volume: Total Building Infiltration: Total Building Ventilation: *Indicated volume is based on c	X{ X_ sustom b	.475 <u>82,240*</u> 39,042 <u>0.0167</u> 651 puilding v	AC/hr Cu.ft. Cu.ft./h CFM CFM volume.	r	X 82, 18 X 0.	.220 <u>240*</u> 3,130 <u>0167</u> 302	AC/hr Cu.ft. Cu.ft./I CFM CFM	hr				
System 1 Infiltration & Ventilation Sensible Infiltration & Ventilation Latent O Infiltration & Ventilation Sensible Winter Infiltration Specified: Blower Door Data: Wind Shielding Class: Building Stories: Multi/Single Option: Assumed n: Pressure Diff.: Test Flow (Selected): Test AC/hr:	e Gain M Gain Mu e Loss M .475 A .220 A	Multiplier: Itiplier: Multiplier: .C/hr (18 .C/hr (84 2 - 1 2 - 35 .69 .5, 3,8	1 7 7 CFM) - Few O ngle-Po 5 330 888619	1.89 = (0.07 = (78.88 = (bstruction)	(1.10 X (0.68 X (1.10 X		X 11.00 X 15.07 X 73.00	0 Sum 7 Grai 0 Wint	nmer Te ns Diffe er Tem	mp. Differ rence) p. Differen	ence ice))
System 2 Infiltration & Ventilation Sensible Infiltration & Ventilation Latent O Infiltration & Ventilation Sensible Winter Infiltration Specified: Blower Door Data: Wind Shielding Class: Building Stories: Multi/Single Option: Assumed n: Pressure Diff.:	e Gain N Gain Mu e Loss N .475 A .220 A	Multiplier: Itiplier: Multiplier: .C/hr (47(.C/hr (218 2 - 1 Si .64 .51 .51 .51	1 7 0 CFM) 8 CFM) - Few O ngle-Po 5	1.89 = (0.07 = (78.88 = (bstruction)	(1.10 X (0.68 X (1.10 X s 28	.982) .982) .982)	X 11.00 X 15.07 X 73.00	0 Sum 7 Grai 0 Wint	nmer Te ns Diffe ær Tem	mp. Differ rence) p. Differen	ence ice))

28

Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	.00		4,704				110,287	1,458			
System 1	.00		2,304				33,656	445			0x0*
Zone 1			2,304				33,656 <mark></mark>	445		445	8x12
1-Meeting Room			1,290				11,614	154		154	26
2-Kitchen			280				8,496 <mark></mark>	112		112	25
3-Bathrooms			182				3,704 <mark></mark>	49		49	15
4-Laundry			72				1,566	21		21	14
5-Office Interior			120				448	6		6	14
6-Office Exterior			120				3,690	49		49	15
7-Storage			120				3,690 <mark></mark>	49		49	15
8-Server Room			120				448	6		6	14
System 2	.00		2,400				76,631	1,013			0x0*
Zone 1			2,400				76,631	1,013		1,013	12x14
9-Garage Bavs			2,400				76,631	1,013		1,013	106

Total Building Summary Loads

Component	Area	Sen	Lat	Sen	Total
Description	Quan	LOSS	Gain	Gain	Gain
reflective, vinyl frame, u-value .29, SHGC .26	8.3	175	0		
11I: Door-Wood - Panel With Metal Storm	37.2	978	0		
Existing: Door-Overhead Door	504	5,520	0		
12C-0sm: Wall-Frame, R-13 insulation in 2 x 4 stud	3277.5	27,514	0		
cavity, no board insulation, siding finish, metal studs					
12C-0bw: Wall-Frame, R-13 insulation in 2 x 4 stud	813	5.400	0		
cavity no board insulation brick finish wood studs	0.0	0,100	C C		
18A-19: Roof/Ceiling-Roof, Joists Between Roof Deck	4704	17 514	0		
and Coiling or Ecom Encansulated Pool Joists Dark	7707	17,014	0		
and Celling of Foant Encapsulated Root Joists, Dark					
Membrane, Dark Ter and Crovel P 10 blanket or					
ioose iiii	054	4.055	0		
22A-pn: Floor-Slab on grade, No edge insulation, no	254	1,855	0		
insulation below floor, any floor cover, passive, heavy					
moist soil					
22A-ph: Floor-Slab on grade, No edge insulation, no	2	2	0		
insulation below floor, any floor cover, passive, heavy					
moist soil					
Subtotals for structure:		58.958	0		
People:	0		-		
Equipment	C C				
Lighting:	0				
Ductwork:	Ũ				
Infiltration: Winter CEM: 651 Summer CEM: 302		51 320			
Vontilation: Winter CEM: Summer CEM:		51,525			
Total Building Load Totals:		110,287			
Chaoly Figures					
Check Figures		or Caucro H			000 *
Total Building Supply CFM.					.000
Square ft. of Room Area: 4,704	Square	n. Per Ton:			
Volume ($π^3$): 82,240					
Based on area of rooms being heated or cooled (whichey	ver governs sys	stem) rather	than entire flo	oor area.	
** Based on area of rooms being cooled.					
***Indicated volume is based on custom building volume.					
Building Loads					
Total Heating Required Including Ventilation Air: 110),287 Btuh	110.287	MBH		
Notes					
Reversion and ACCA approved Manual Land Manual D comm					
Calculations are performed per ACCA Manual 1 8th Edition	Version 2 an		nual D		
All computed results are estimates as building use and we	athor mov vorv				
Resure to soloct a upit that mosts both consible and latest	loode occordin	a to the me	oufacturar'a a	orformance	lata at
De sure to select à unit that meets pour sensible and latent	ioaus accordin	ig to the mai	nulaciulei s p		iala al
your design conditions.					

100.0%

Plainfield Fire Station HVAC Load Calculations

for

Eversource.Plainfield

Plainfield NH 03781

Improved Envelope

Prepared By:

Margaret Dillon S.E.E.D.S.

September 9, 2019

Rhvac is an ACCA approved Manual J and Manual D computer program. Calculations are performed per ACCA Manual J 8th Edition, Version 2, and ACCA Manual D.

Rhvac - Residential & Light Commercial HVAC Loads
Doug Waitt
New Ipswich, NH 03071

Elite Software Development, Inc. Plainfield Fire Station Page 2

Project Report

General Project Information						
Project Title:	Plainfield Fire St	tation				
Project Date:	Thursday, Augu	st 15. 2019				
Client Name:	Eversource Plai	nfield				
Client City:	Plainfield NH 03	781				
Company Name:		101				
Company Name.	S.E.E.D.S.					
Company Representative:	Margaret Dillon					
Company E-Mail Address:	mdillon@myfairp	point.net				
Design Data				· · ·		
Reference City:		Lebanor	n, New Hamps	shire		
Building Orientation:		Front do	or faces Sout	heast		
Daily Temperature Range:		Medium				
Latitude:		43 Degrees	6			
Elevation:		493 ft.				
Altitude Factor:		982				
Out	door Outdoor	Outdoor	Indoor	Indoor	Grains	
	Bulb Wet Bulb	Rel Hum	Rel Hum	Dry Bulb	Difference	
Winter:	_3 _26	<u>n/a</u>	n/a	70	n/a	
Willer.	-3 -3.0	11/d	F00/	70	11/d	
Summer:	80 09	43%	50%	75	15	
Chook Figuroo						
Tetel Duilding Cumply OFM						000 *
Total Building Supply CFIM:		4 70 4		er Square π.	:	.000 **
Square ft. of Room Area:		4,704	Square	ft. Per Ion:		**
Volume (ft ³):	82	,240***				
* Based on area of rooms I	poing bootod or ooo	lod (whichovo	er doverns svs	stem) rather	than entire floo	r area.
	being neated of coo		J			
** Based on area of rooms	being cooled.		<u>.</u>			
** Based on area of rooms ***Indicated volume is base	being cooled. d on custom buildin	ig volume.	<u>.</u>			
** Based on area of rooms ***Indicated volume is base	being cooled. d on custom buildin	ng volume.				
** Based on area of rooms ***Indicated volume is base Building Loads	being cooled. d on custom buildin	ng volume.	311 Rtub	96 611	MBH	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl	being cooled. d on custom buildin uding Ventilation Ai	ng volume. r: 96,6	611 Btuh	96.611	MBH	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl	being cooled. d on custom buildin uding Ventilation Ai	ng volume. r: 96,6	611 Btuh	96.611	MBH	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes	being cooled. d on custom buildin uding Ventilation Ai	ng volume. r: 96,6	511 Btuh	96.611	MBH	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve	d Manual J and Ma	ng volume. r: 96,6 nual D compu	511 Btuh	96.611	MBH	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed	d Manual J and Ma per ACCA Manual	ng volume. r: 96,6 nual D compu J 8th Edition,	511 Btuh Iter program. Version 2, and	96.611 d ACCA Ma	MBH nual D.	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es	d Manual J and Ma per ACCA Manual timates as building	r: 96,6 nual D compu J 8th Edition, use and weat	511 Btuh Iter program. Version 2, and her may vary.	96.611 d ACCA Ma	MBH nual D.	
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that	d Manual J and Ma per ACCA Manual meets both sensibl	r: 96,6 nual D compu J 8th Edition, use and weath	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath le and latent lo	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath and latent to	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weath le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent lo	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	611 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	r: 96,6 nual D compu J 8th Edition, use and weat le and latent to	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at
** Based on area of rooms ***Indicated volume is base Building Loads Total Heating Required Incl Notes Rhvac is an ACCA approve Calculations are performed All computed results are es Be sure to select a unit that your design conditions.	d Manual J and Ma per ACCA Manual timates as building meets both sensibl	nual D compu J 8th Edition, use and weat le and latent to	511 Btuh Iter program. Version 2, and her may vary. bads accordin	96.611 d ACCA Ma g to the mar	MBH nual D. nufacturer's per	formance data at

Doug Waitt	nercial H	VAC Load	S					E	lite So	ftware Devel Plainfield	opment, Inc. d Fire Station
New Ipswich, NH 03071				•••							Page 3
Miscellaneous Repor	t										
System 1 Meeting Room, Kitch Input Data	en, Offi	ces		Outdoor Dry Bulb	Out Wet	door Bulb	Outdo Rel.Hu	or lı ım Rel	ndoor .Hum	Indoor Dry Bulb	Grains Differenc e
Winter: Summer:				-3 86		-3.6 69	80 43	% %	n/a 50%	70 75	n/a 15.07
System 2 Apparatus Bays		Out	door	Outdoo	r		or	Indoor Bol Hum		Indoor	Grains
Winter:		Dry	-3	-3.6	<u>)</u> 6	80)%	n/a		70	n/a
Summer:			86	69	9	43	8%	50%		75	15.07
Duct Sizing Inputs	<u> </u>										
Main Calculate: Use Schedule: Roughness Factor: Pressure Drop: Minimum Velocity: Maximum Velocity: Minimum Height: Maximum Height:	Trunk Yes 00300 .1000 0 900	in.wg./10 ft./min ft./min in. in.	0 ft.	Ru .(Yes Yes 01000 .1000 0 750	in.wg ft./mii ft./mii in. in.	./100 ft. n n				
Outside Air Data											
Infiltration Specified:		<u>Winter</u> .377 516	AC/hr CFM		<u>Sun</u>	n <u>mer</u> .175 240	AC/hr CFM				
Infiltration Actual: Building Volume: Total Building Infiltration: Total Building Ventilation: *Indicated volume is based on	XX X custom	.377 <u>82,240*</u> 30,964 0.0167 516 building v	AC/hr Cu.ft. Cu.ft./h CFM CFM volume.	r	X 82, 14 <u>X 0.</u> 0	.175 <u>240*</u> .,379 <u>0167</u> 240	AC/hr Cu.ft. Cu.ft./hi CFM CFM	r			
System 1 Infiltration & Ventilation Sensibl Infiltration & Ventilation Latent (Infiltration & Ventilation Sensibl Winter Infiltration Specified: Summer Infiltration Specified: Blower Door Data: Wind Shielding Class: Building Stories: Multi/Single Option: Assumed n: Pressure Diff.: Test Flow (Selected): Test AC/hr:	le Gain Gain M le Loss .377 . .175 .	Multiplier: ultiplier: Multiplier: AC/hr (14: AC/hr (66 2 1 Si .6 50 5, 3.	: 1 7 3 CFM) CFM) - Few O ngle-Po 5 330 888619	11.89 = (10.07 = (78.88 = (9bstructions	1.10 X 0.68 X 1.10 X	.982) .982) .982)	X 11.00 X 15.07 X 73.00	Summer Grains E Winter T	Temp Differer emp. I	o. Difference nce) Difference)	e)
System 2 Infiltration & Ventilation Sensibl Infiltration & Ventilation Latent Infiltration & Ventilation Sensibl Winter Infiltration Specified: Summer Infiltration Specified: Blower Door Data: Wind Shielding Class: Building Stories: Multi/Single Option: Assumed n: Pressure Diff	le Gain M Gain M le Loss .377 . .175 .	Multiplier: ultiplier: AC/hr (373 AC/hr (173 AC/hr (173 1 Si .6	: 1 3 CFM) 3 CFM) 3 CFM) - Few O ngle-Po 5	11.89 = (10.07 = (78.88 = (9bstructions	1.10 X 0.68 X 1.10 X	.982) .982) .982)	X 11.00 X 15.07 X 73.00	Summer Grains E Winter T	Temp Differer emp. I	o. Difference nce) Difference)	e)

\\Mac\Home\Desktop\19085 Plainfield Fire Station Improved 19-0909 DCW.rh9

Rhvac - Residential & Light Commercia Doug Waitt New Ipswich, NH 03071	Elite Software Development, Inc. Plainfield Fire Station Page 4	
Miscellaneous Report (c	ont'd)	
Outside Air Data		
Test Flow (Selected): Test AC/hr:	5,330 3.888619	

Load Preview Report

Scope	Net Ton	ft.² /Ton	Area	Sen Gain	Lat Gain	Net Gain	Sen Loss	Sys Htg CFM	Sys Clg CFM	Sys Act CFM	Duct Size
Building	.00		4,704				96,611	1,277			
System 1	.00		2,304				29,489	390			0x0*
Zone 1			2,304				29,489 <mark>-</mark>	390		390	8x10
1-Meeting Room			1,290				10,529 <mark>-</mark>	139		139	26
2-Kitchen			280				7,255	96		96	16
3-Bathrooms			182				3,189 <mark>-</mark>	42		42	15
4-Laundry			72				1,344 <mark>-</mark>	18		18	14
5-Office Interior			120				448	6		6	14
6-Office Exterior			120				3,138 <mark>-</mark>	41		41	15
7-Storage			120				3,138 <mark>-</mark>	41		41	15
8-Server Room			120				448	6		6	14
System 2	.00		2,400				67,122	887			0x0*
Zone 1			2,400				67,122 <mark>_</mark>	887		887	10x16
9-Garage Bays			2,400				67,122 <mark>_</mark>	887		887	96
Total Building Summary Loads

Component	A	rea	Sen	Lat	Sen	Total
1A-ny-o: Clazing-Single pape, operable window	Q Q	udii Q 2	175	Gaili	Gain	Gain
reflective, vinyl frame, u-value .29, SHGC .26		0.3	175	0		
11I: Door-Wood - Panel With Metal Storm	3	37.2	978	0		
Existing: Door-Overhead Door		504	5,520	0		
12C-0sm: Wall-Frame, R-13 insulation in 2 x 4 stud	327	7.5	23,927	0		
cavity, no board insulation, siding finish, metal studs						
12C-0bw: Wall-Frame, R-13 insulation in 2 x 4 stud		813	5,935	0		
cavity, no board insulation, brick finish, wood studs						
18A-19: Roof/Ceiling-Roof Joists Between Roof Deck and Ceiling or Foam Encapsulated Roof Joists, Dark or Bold-Color Asphalt Shingle, Dark Metal, Dark Membrane, Dark Tar and Gravel, R-19 blanket or	4	704	17,514	0		
loose fill						
22A-ph: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, heavy moist soil		254	1,855	0		
22A-ph: Floor-Slab on grade, No edge insulation, no insulation below floor, any floor cover, passive, heavy moist soil		2	2	0		
Subtotals for structure:			55.906	0		
People:		0	,	-		
Equipment:						
Liahtina:		0				
Ductwork:						
Infiltration: Winter CFM: 516. Summer CFM: 240			40.705			
Ventilation: Winter CFM: . Summer CFM:			-,			
Total Building Load Totals:			06 611			
Total Bulluing Load Totals.			90,011			
Check Figures						
Total Building Supply CFM:	(CFM Per	Square ft	t.:		.000 *
Square ft. of Room Area: 4,704	5	Square ft	. Per Ton	:		**
Volume (ft ³): 82,240***		•				
* Based on area of rooms being heated or cooled (whiche	ver gove	rns syste	em) rather	than entire fl	oor area.	
** Based on area of rooms being cooled.	•					
***Indicated volume is based on custom building volume.						
Building Loads						
Total Heating Required Including Ventilation Air: 96	6.611 B	uh	96.611	MBH		
Notes	0,011 2					
Notes Revealis on ACCA approved Manual Land Manual Disord	putor pro	arom				
Calculations are performed per ACCA Manual J 8th Edition All computed results are estimates as building use and we Be sure to select a unit that meets both sensible and latent	n, Version ather ma t loads ac	y and , a 2, and , y vary. ccording	ACCA Ma to the ma	anual D. Inufacturer's p	performance c	ata at
your design conditions.		0				

100.0%

DDM DESIGN DAY Mechanicals Inc

9/11/19

HEATING AND AIR CONDITIONING SCOPE OF WORK

- Purpose The purpose for this Heating Scope of Work (SOW) is to solicit Design/ Build proposals for a new heating system for the existing Plainfield Fire Station, 1260 NH Route 12-A, Plainfield, NH. The Brad Atwater is the Town's Representative, the reviewing Mechanical Engineer is Doug Waitt of Design Day Mechanicals, Inc., hereafter known as the Engineer, and the Design/ Build Heating Contractor shall be hereafter known as the Contractor.
 - A. Heating load calculations have been performed by Margaret Dillon of S.E.E.D.S and reviewed by the Engineer based on expected existing envelope insulation and air sealing.
 - B. The Contractor is responsible for visiting the site to observe existing conditions with the Town's Representative and to correlate existing rooms names with those listed in this SOW. The Contractor will be responsible for all subtrades associated with providing a complete system, including cutting, patching and touch-up painting that may be required. The Contractor shall review all proposed ductwork systems with the Town's Representative for approval prior to any fabrication or installation.
 - C. A licensed electrician retained by the Contractor shall provide all required power wiring. The Contractor shall provide all control wiring.
- II. Proposed Work:
 - A. Three (3) new Heating system options are described herein. Each shall be priced separately. Detailed equipment Submittals are provided with this SOW, with budget pricing based on recent manufacturer's representative per ton pricing, and the manufacturer's representatives contact information. The Contractor shall contact the manufacturer's representative for details on what is and is not included in budget pricing.
 - B. Provide, install, duct, pipe and control wire complete new heat pump systems with space thermostats for each option for the two (2) zones of control as described on the Equipment Submittal Sheets. Equipment for the Apparatus Bays shall be located within that space and equipment for the meeting Room, Kitchen and Offices shall be installed above the Meeting Room. Duct and piping design shall be by the Contractor.
 - C. Refer to attached Options #1 through #3.
- III. Start-up, commission and warranty all equipment and systems for one year from the date of acceptance/ final payment by the Owner.

End of Heating and Air Conditioning Scope of Work

Andrew W. Arsenault, P.E.	•	81 Pointed Fir Blvd, Wells, ME 04090	•	(207) 337-2473	•	andya@designdaymech.com
Douglas C. Waitt	•	P.O. Box 447, New Ipswich, NH 03071	•	(603) 801-6000	•	dougw@designdaymech.com
Richard D. Gagnon	•	84 Gilford Street, Manchester, NH 03102	•	(603) 668-5027	•	rickg@designdaymech.com
John L. Waitt	•	148 Beaver Ridge Rd, Ctr. Barnstead, NH 03225	•	(603) 269-7253	•	johnw@designdaymech.com
David C. Magnuson	•	65 Old Center Rd, Deerfield, NH 03037	•	(603) 463-1086	•	davem@designdaymech.com
Monique R. Magnuson	•	65 Old Center Rd, Deerfield, NH 03037	•	(603) 463-1086	•	moniquem@designdaymech.com

Option #1 – High Efficiency Air Source Heat Pumps (HE-ASHP) and Second Stage Electric Heat, Refer to Equipment Sheets. Budget Equipment Price - \$21,000, Manufacturer's Representative – DXS, Attention: Adam Camillo, 1-978-977-9911, adam.camillo@dxseng.com

1. External appearance

1.1 Indoor unit

Ceiling mounted cassette type (Round flow with s	sensing)
FCQ18TAVJU FCQ24TAVJU FCQ30TAVJU	
FCQ36TAVJU	
FCQ42TAVJU	
FCQ48TAVJU	
Ceiling suspended type	
FHQ18PVJU	
FHQ24PVJU	
FHQ30PVJU	
FHQ36MVJU	
FHQ42MVJU	
Wall mounted type	
FAQ18TAVJU	
FAQ24TAVJU	
Police	
Ceiling mounted duct type	
FBQ18PVJU	
FBQ24PVJU	
FBQ30PVJU	
FBQ36PVJU	
FBQ42PVJU	
FBQ48PVJU	
Air handling unit	Option #1
FTQ18TAVJUD FTQ18TAVJUA	
FTQ24TAVJUD FTQ24TAVJUA	HE-ASHP-1
FTQ30TAVJUD FTQ30TAVJUA	Meeting Kitchen Offices
FTQ36TAVJUD FTQ36TAVJUA	wiedding, Ritchen, Offices
FTQ42TAVJUD FTQ42TAVJUA <	HE-ASHP-2 & 3
FTQ48TAVJUD FTQ48TAVJUA	Apparatus Bays
() () ()	

1.2 Outdoor unit	
RZR18TAVJU	
RZRZ4TAVJU	
RZQ18TAVJU	Party Party
RZQ24TAVJU	
RZR30TAVJU	_
RZR36TAVJU	Option #1
RZR42TAVJU	HF-ASHP-1
RZR48TAVJU	
	Meeting, Kitchen,
RZQ30TAVJU	Offices
	HE-ASHP-2 & 3
RZQ48TAVJU	Apparatus Bays

Air handling unit, continued

HE-ASHP-1

	Indoor	with fact	tory ect	FTQ30TAVJUD	FTQ36TAVJUD				
Model	unit	without disconn	factory ect	FTQ30TAVJUA	FTQ36TAVJUA				
	Outdoor u	init		RZQ30TAVJU	RZQ36TAVJU				
Power supply	,			1 phase, 208/230 V, 60 Hz	1 phase, 208/230 V, 60 Hz				
★1, ★4 Cooli	ng capacity		Btu/h (kW)	30,000 (8.8)	36,000 (10.6)				
★2, ★4 Heati	ng capacity		Btu/h (kW)	34,000 (10.0)	40,000 (11.7)				
★3, ★4 Heati	ng capacity		Btu/h (kW)	22,000 (6.4)	26,000 (7.6)				
SEER (Rated)			16.0	15.3				
EER (Rated)			Btu/h-W	12.5	11.3				
HSPF (Rated)			10.4	9.5				
	,	with fact disconn	tory ect	FTQ30TAVJUD	FTQ36TAVJUD				
indoor unit		without disconn	factory ect	FTQ30TAVJUA	FTQ36TAVJUA				
Casing/color				Daikin Slate Gray	Daikin Slate Gray				
Dimensions	H×W×D		in. (mm)	45 × 17.5 × 21 (1,143 × 445 × 533)	45 × 17.5 × 21 (1,143 × 445 × 533)				
Cail	Туре			Cross fin coil	Cross fin coil				
Coll	Face area		ft. ² (m ²)	3.75 (35)	3.75 (35)				
	Туре			Sirocco FC Centrifugal	Sirocco FC Centrifugal				
	Motor outp	out	HP	1/2	1/2				
Fan	Airflow rate	e (H/M/L)	cfm (m ³ /min)	1,000/850/700 (28.3/24.1/19.8)	1,050/900/750 (29.7/25.5/21.2)				
	External st pressure	tatic	in. w.g.	0.1" - 0.9"	0.1" - 0.9"				
Air filter				— * 5	— * 5				
Weight			lbs (kg)	115 (52.2)	140 (63.5)				
		Liquid	in. (mm)	φ3/8 (φ9.5) (Brazing connection)	φ3/8 (φ9.5) (Brazing connection)				
Piping conne	ctions	Gas	in. (mm)	φ5/8 (φ15.9) (Brazing connection)	φ5/8 (φ15.9) (Brazing connection)				
		Drain	in. (mm)	3/4" (19.1)	3/4" (19.1)				
Remote contr	oller	Wired		BRC1E73, BRC2A71	BRC1E73, BRC2A71				
(accessory)		Wireless		BRC4C82	BRC4C82				
Outdoor unit	t			RZQ30TAVJU	RZQ36TAVJU				
Casing/color				Ivory white	Ivory white				
Dimensions	H × W × D		in. (mm)	52–15/16 × 35–7/16 × 12–5/8 (1,345 × 900 × 320)	52–15/16 × 35–7/16 × 12–5/8 (1,345 × 900 × 320)				
	Туре			Cross fin coil	Cross fin coil				
Coil	Rows × St	ages × FF	2	2 × 60 × 19	2 × 60 × 19				
	Face area		ft.² (m²)	12.2 (1.134)	12.2 (1.134)				
	Model			2YC90GXD#D	2YC90GXD#D				
Compressor	Туре			Hermetically sealed swing type	Hermetically sealed swing type				
	Motor outp	put	KVV	3.5	3.5				
	Model			P4/N	P4/N				
Fan	Туре		10/	Propeller fan	Propeller fan				
	Notor outp		VV	70 × 2	70 × 2				
\A/aiabh	Almow rate	e		3,741 (106)	3,741 (106)				
weight		Liquid	in (mm)	225 (102)	225 (102)				
Dining conno.	otiono		in. (mm)	$\phi_{3/8}$ ($\phi_{9.5}$) (Flare connection)	$\phi_{3/8}$ ($\phi_{9.5}$) (Flare connection)				
Piping connee	cuons	Gas	in. (mm)	φ5/8 (φ15.9) (Flare connection)	φ5/8 (φ15.9) (Flare connection)				
Safety device	s	Dialit	111. (111111)	High pressure switch, Outdoor fan driver overload	High pressure switch, Outdoor fan driver overload				
				plugs, Fuse	plugs, Fuse				
Capacity step %			%	14-100	14-100				
Refrigerant co	ontrol			Electronic expansion valve	Electronic expansion valve				
	ength	ft (m)	25 (7.6)	25 (7.6)					
Ref. piping	Max. lengt	h	ft (m)	230 (70)	230 (70)				
	Max. height	difference	ft (m)	98 (30)	98 (30)				
Defrimerent	Туре			R410Á	R410Á				
Reinigeranic Charge Ibs (kg) 7.9 (3.6) 7.9 (3.6)									
Def e	Туре			Refer to the name plate of compressor.	Refer to the name plate of compressor.				
Rei. Oli	Charge		L	1.52	1.52				

Notes:

★1 Indoor temp.: 80°FDB (26.7°CDB), 67°FWB (19.4°CWB) / Outdoor temp.: 95°FDB (35.0°CDB) / Equivalent piping length : 25 ft. (7.6 m), level difference : 0 ft. (0 m).
★2 Indoor temp.: 70°FDB (21.1°CDB) / Outdoor temp.: 47°FDB (8.3°CDB), 43°FWB (6.1°CWB) / Equivalent piping length : 25 ft. (7.6 m), level difference : 0 ft. (0 m).
★3 Indoor temp.: 70°FDB (21.1°CDB) / Outdoor temp.: 17°FDB (-8.3°CDB), 15°FWB (-9.4°CWB) / Equivalent piping length: 25 ft. (7.6 m), level difference: 0 ft. (0 m).

Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
Air filter is not standard accessory (field supply parts), but please mount it in the duct system of the suction side.

Air handling unit, continued

HE-ASHP-2 & 3

	Indoor	with fac disconn	tory ect	FTQ42TAVJUD	FTQ48TAVJUD				
Model	unit	without disconn	factory ect	FTQ42TAVJUA	FTQ48TAVJUA				
	Outdoor u	init		RZQ42TAVJU	RZQ48TAVJU				
Power supply	,			1 phase, 208/230 V, 60 Hz	1 phase, 208/230 V, 60 Hz				
★1, ★4 Cooli	ng capacity		Btu/h (kW)	42,000 (12.3)	48,000 (14.1)				
★2, ★4 Heati	ng capacity		Btu/h (kW)	47,000 (13.8)	54,000 (15.8)				
★3. ★4 Heati	ng capacity		Btu/h (kW)	31.000 (9.1)	32.000 (9.4)				
SEER (Rated)			16.0	14.8				
EER (Rated)	/		Btu/h-W	11.0	9.5				
HSPF (Rated)			9.0	9.0				
Indoorunit	,	with fac disconn	tory ect	FTQ42TAVJUD	FTQ48TAVJUD				
		without disconn	factory ect	FTQ42TAVJUA	FTQ48TAVJUA				
Casing/color			_	Daikin Slate Gray	Daikin Slate Gray				
Dimensions	H × W × D		in. (mm)	53.43 × 21 × 21 (1,357 × 533 × 533)	53.43 × 21 × 21 (1,357 × 533 × 533)				
Coil	Туре			Cross fin coil	Cross fin coil				
Coll	Face area		ft.² (m²)	5.15 (48)	5.15 (48)				
	Туре			Sirocco FC Centrifugal	Sirocco FC Centrifugal				
	Motor outp	put	HP	3/4	3/4				
Fan	Airflow rate	e (H/M/L)	cfm (m ³ /min)	1,400/1,190/980 (39.7/33.7/27.8)	1,520/1,290/1,060 (43.1/36.5/30.0)				
	External st pressure	tatic	in. w.g.	0.1" - 0.9"	0.1" - 0.9"				
Air filter				— * 5	— ★ 5				
Weight			lbs (kg)	150 (68)	150 (68)				
		Liquid	in. (mm)	φ3/8 (φ9.5) (Brazing connection)	φ3/8 (φ9.5) (Brazing connection)				
Piping conne	ctions	Gas	in. (mm)	φ5/8 (φ15.9) (Brazing connection)	φ5/8 (φ15.9) (Brazing connection)				
		Drain	in. (mm)	3/4" (19.1)	3/4" (19.1)				
Remote contr	oller	Wired		BRC1E73, BRC2A71	BRC1E73, BRC2A71				
(accessory)		Wireless		BRC4C82	BRC4C82				
Outdoor unit	t			RZQ42TAVJU	RZQ48TAVJU				
Casing/color				Ivory white	Ivory white				
Dimensions	H × W × D		in. (mm)	52–15/16 × 35–7/16 × 12–5/8 (1,345 × 900 × 320)	52–15/16 × 35–7/16 × 12–5/8 (1,345 × 900 × 320)				
	Туре			Cross fin coil	Cross fin coil				
Coil	Rows × St	ages × FF	2	2 × 60 × 19	2 × 60 × 19				
	Face area		ft.² (m²)	12.2 (1.134)	12.2 (1.134)				
	Model			2YC90GXD#D	2YC90GXD#D				
Compressor	Туре		1	Hermetically sealed swing type	Hermetically sealed swing type				
	Motor outp	put	kW	3.5	3.5				
	Model			P47N	P47N				
Fan	Туре			Propeller fan	Propeller fan				
	Motor outp	put	W	/0 × 2	/0 × 2				
	Airflow rate	e	ctm (m ^s /min)	3,741 (106)	3,741 (106)				
Weight			lbs (kg)	225 (102)	225 (102)				
D		Liquid	<u>in. (mm)</u>	φ3/8 (φ9.5) (Flare connection)	ϕ 3/8 (ϕ 9.5) (Flare connection)				
Piping conne	ctions	Gas	<u>in. (mm)</u>	ϕ 5/8 (ϕ 15.9) (Flare connection)	ϕ 5/8 (ϕ 15.9) (Flare connection)				
		Drain	in. (mm)	φ1 (φ26) (Hole)	φ1 (φ26) (Hole)				
Safety device	S			High pressure switch, Outdoor fan driver overload protector, Inverter overload protector, Fusible plugs Fuse	High pressure switch, Outdoor fan driver overload protector, Inverter overload protector, Fusible plugs Fuse				
Capacity step % 14-100 14-100					14-100				
Refrigerant co	ontrol			Electronic expansion valve	Electronic expansion valve				
	Standard I	enath	ft (m)	25 (7.6)	25 (7.6)				
Ref. pipina	Max, lengt	h	ft (m)	230 (70)	230 (70)				
	Max, height	difference	ft (m)	98 (30)	98 (30)				
	Туре			R410A	R410A				
Refrigerant	Charge		lbs (ka)	7.9 (3.6)	7.9 (3.6)				
	Туре			Refer to the name plate of compressor	Refer to the name plate of compressor				
Ref. oil	Charge		L	1.52	1.52				
				-	•				

Notes:

★1 Indoor temp.: 80°FDB (26.7°CDB), 67°FWB (19.4°CWB) / Outdoor temp.: 95°FDB (35.0°CDB) / Equivalent piping length : 25 ft. (7.6 m), level difference : 0 ft. (0 m).

★2 Indoor temp.: 70°FDB (21.1°CDB) / Outdoor temp.: 47°FDB (8.3°CDB), 43°FWB (6.1°CWB) / Equivalent piping length: 25 ft. (7.6 m), level difference: 0 ft. (0 m).
 ★3 Indoor temp.: 70°FDB (21.1°CDB) / Outdoor temp.: 17°FDB (-8.3°CDB), 15°FWB (-9.4°CWB) / Equivalent piping length: 25 ft. (7.6 m), level difference: 0 ft. (0 m).

Capacities are net, including a deduction for cooling (an addition for heating) for indoor fan motor heat.
Air filter is not standard accessory (field supply parts), but please mount it in the duct system of the suction side.

Unit : in. (mm)

FTQ42-48TAVJUD FTQ42-48TAVJUA

HE-ASHP-2 & 3

Unit : in. (mm)

FTQ18-48TAVJUD FTQ18-48TAVJUA

Madal			Power Supply			IF	M	Inpu	t (W)
woder	Hz	Volts	Voltage range	MCA	MOP	HP	FLA	Cooling	Heating
FTQ18TAVJUD	60	208/230 V		4.9	15	1/2	3.9	215	215
FTQ24TAVJUD	60	208/230 V	Max. 229 V	4.9	15	1/2	3.9	273	273
FTQ30TAVJUD	60	208/230 V	Min. 187 V	4.9	15	1/2	3.9	407	407
FTQ36TAVJUD	60	208/230 V	Max. 253 V	4.9	15	1/2	3.9	436	436
FTQ42TAVJUD	60	208/230 V	Min. 209 V	6.5	15	3/4	5.2	473	473
FTQ48TAVJUD	60	208/230 V		6.5	15	3/4	5.2	518	518
FTQ18TAVJUA	60	208/230 V		4.9	15	1/2	3.9	215	215
FTQ24TAVJUA	60	208/230 V	Max. 229 V	4.9	15	1/2	3.9	273	273
FTQ30TAVJUA	60	208/230 V	Min. 187 V	4.9	15	1/2	3.9	407	407
FTQ36TAVJUA	60	208/230 V	Max. 253 V	4.9	15	1/2	3.9	436	436
FTQ42TAVJUA	60	208/230 V	Min. 209 V	6.5	15	3/4	5.2	473	473
FTQ48TAVJUA	60	208/230 V		6.5	15	3/4	5.2	518	518

Symbols:

MCA : Minimum Circuit Amps (A) MOP : Maximum Overcurrent Protective Device (A)

IFM: Indoor Fan Motor

HP: Fan Motor Rated Output (HP)

FLA: Full Load Amps (A)

Notes:

1. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminals is not below or above listed range limits.

Maximum allowable voltage imbalance between phases is 2%.
 Select wire size based on the MCA.

8.2 Electric heater HE-ASHP-1 FTQ18-36TAVJUD FTQ18-36TAVJUA

Madal		CIRCUIT 1			CIRCUIT 2		SINGLE-F	POINT KIT
IVIOUEI	AMPS	MCA	MOP	AMPS	MCA	MOP	MCA	MOP
FTQ18TAVJUD FTQ18TAVJUA	0/0	4.9/4.9	15/15	_	_	_	_	_
HKS*03XC*	10.8/12.5	18.4/21	20/25	—	—	—	—	_
HKS*05XC*	17.3/20	27/29.9	30/30	—	—	—	—	—
HKS*06XC*	21.7/25	32/36.1	35/40	—	—	—	—	—
HKS*08XC*	28.9/33.3	41/46.5	45/50	—	—	—	—	—
HKS*10XC*	34.7/40	48/54.9	50/60	—	—	—	—	—
FTQ24TAVJUD FTQ24TAVJUA	0/0	4.9/4.9	15/15	_	_	_	_	_
HKS*03XC*	10.8/12.5	18.4/21	20/25	—	—	—	—	_
HKS*05XC*	17.3/20	27/29.9	30/30	—	—	—	—	—
HKS*06XC*	21.7/25	32/36.1	35/40	—	—	—	—	—
HKS*08XC*	28.9/33.3	41/46.5	45/50	—	—	—	—	—
HKS*10XC*	34.7/40	48/54.9	50/60	—	—	—	—	—
FTQ30TAVJUD FTQ30TAVJUA	0/0	4.9/4.9	15/15	_	_	_	_	_
HKS*03XC*	10.8/12.5	18.4/21	20/25	—	—	—	_	_
HKS*05XC*	17.3/20	27/29.9	30/30	—	—	—	—	—
HKS*06XC*	21.7/25	32/36.1	35/40	—	—	—	—	—
HKS*08XC*	28.9/33.3	41/46.5	45/50	—	—	—	—	—
HKS*10XC*	34.7/40	48/54.9	50/60	—	—	—	—	—
FTQ36TAVJUD FTQ36TAVJUA	0/0	4.9/4.9	15/15	_	_	_	_	_
HKS*03XC*	10.8/12.5	18.4/21	20/25	—	—	—	—	—
HKS*05XC*	17.3/20	27/29.9	30/30	<u> </u>	<u> </u>	<u> </u>		
HKS*06XC*	21.7/25	32/36.1	35/40	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>
HKS*08XC*	28.9/33.3	41/46.5	45/50	<u> </u>	<u> </u>	<u> </u>	—	—
HKS*10XC*	34.7/40	48/54.9	50/60	_	_	_	—	

Notes:

1. AMPS indicates heater amp draw.

2. Circuit 1 indicates single point power connection requirements when using a single stage electric heater. Circuit 1 powers both the FTQ printed circuit board as well as the 1st stage of heat.

Circuit 2 indicates the power requirements for a second power point connection when using a two stage heater (15 kW and above).
 Consult installation manual when using electric heater with FTQ18-36TAVJUD models.

FTQ42-48TAVJUD HE-ASHP-2 & 3 FTQ42-48TAVJUA

Madal		CIRCUIT 1			CIRCUIT 2		SINGLE-POINT KIT			
IVIODEI	AMPS	MCA	MOP	AMPS	MCA	MOP	MCA	MOP		
FTQ42TAVJUD FTQ42TAVJUA	0/0	6.5/6.5	15/15	—	_	_	_	_		
HKS*05XC*	17.3/20	28.2/32	30/35	—	—	—	—	—		
HKS*06XC*	21.7/25	33.6/38	35/40	—	—	—	—	—		
HKS*08XC*	28.9/33.3	42.6/48	45/50	—	—	—	—	—		
HKS*10XC*	34.7/40	49.8/57	50/60	_	_	—	—	—		
HKS*15*#*	34.7/40	49.8/57	50/60	17.3/20	21.7/25	25/25	71.5/81.5	80/90		
HKSC19C*#*	34.7/40	49.8/57	50/60	34.7/40	43.3/50	45/50	93.2/106.5	100/110		
FTQ48TAVJUD FTQ48TAVJUA	0/0	6.5/6.5	15/15	_	_	_	_	_		
HKS*05XC*	17.3/20	28.2/32	30/35	—	—	—	—	—		
HKS*06XC*	21.7/25	33.6/38	35/40	—	—	—	—	_		
HKS*08XC*	28.9/33.3	42.6/48	45/50	—	—	—	—	—		
HKS*10XC*	34.7/40	49.8/57	50/60	—	—	—	—	_		
HKS*15*#*	34.7/40	49.8/57	50/60	17.3/20	21.7/25	25/25	71.5/81.5	80/90		
HKSC19C*#*	34.7/40	49.8/57	50/60	34.7/40	43.3/50	45/50	93.2/106.5	100/110		

Notes:

1. AMPS indicates heater amp draw.

2. Circuit 1 indicates single point power connection requirements when using a single stage electric heater. Circuit 1 powers both the FTQ printed circuit board as well as the 1st stage of heat.

Circuit 2 indicates the power requirements for a second power point connection when using a two stage heater (15 kW and above).
 Consult installation manual when using electric heater with FTQ42-48TAVJUD models.

8.3 Outdoor unit RZR18-48TAVJU RZQ18-48TAVJU

Madal			Ur	nits		Power	supply	Comp.	OFM			
Widder		Hz	Volts	Min.	Max.	MCA	MOP	RLA	kW	FLA		
RZQ18TAVJU												
RZQ24TAVJU		<u> </u>	208/230	187	252	16.5	25	15.3	0.2	0.6		
RZR18TAVJU	C/O	00			200	10.5						
RZR24TAVJU	0											
RZQ30TAVJU		LI/D	LI/D									
RZQ36TAVJU				LI/D								
RZQ42TAVJU					050	00.4	0.5	10.0				
RZQ48TAVJU		60	200/220									
RZR30TAVJU		00	200/230	107	200	29.1	35	19.0	0.070 + 0.070	0.3 + 0.3		
RZR36TAVJU	C/O											
RZR42TAVJU		C/O	C/O									
RZR48TAVJU												

Symbols:

MCA: Minimum Circuit Ampacity (A)

MOP: Maximum Overcurrent Protective Device (See note 7). (A)

RLA: Rated Load Ampere. (A)

OFM: Outdoor Fan Motor. (À)

FLA: Full Load Ampere. (À)

KW: Fan Motor Rated Output. (kW)

Notes:

1. RLA is based on the following conditions. Power supply: 60 Hz 208/230 V Cooling Indoor temp. 80.0°FDB (26.7°CDB) / 67.0°FWB (19.4°CWB) Outdoor temp. 95.0°FDB (35.0°CDB) Heating Indoor temp. 70.0°FDB (21.1°CDB) Outdoor temp. 47.0°FDB (8.3°CDB) / 43.0°FWB (6.1°CWB)

2. Voltage range

Units are suitable for use on electrical systems where voltage supplied to unit terminal is not below or above listed range limits.

3. Maximum allowable voltage variation between phases is 2%.

4. MCA represents maximum input current.

5. MOP represents capacity which may accept MCA.

6. Select wire size based on the value of MCA.

7. MOP is used to select a fuse, circuit breaker, or ground fault circuit interrupter.

3D115460

Notes:

1. If the airflow is less than 10% of the rated air volume, it is automatically adjusted to the rated air volume.

- 2. The unit automatically adjusts the external static pressure between 0.0 in. W.C. 0.9 in. W.C.
- 3. Airflow cannot operate at the rated value if it is outside the ESP range in the above graph.
- 4. Fan speed is changeable by using the remote controller.

FTQ30TAVJUD / FTQ30TAVJUA + RZQ30TAVJU

Cooling Capacity for Standard Condition (Te: 43°F)

Outstand										Indoor	air temp	. °FWB									
Outdoor		57			61			64			67			70			72			75	
an temp.	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
°FDB	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW
23	19.5	15.7	0.71	23.7	18.5	0.87	26.8	20.4	0.99	30.0	21.4	1.13	33.2	22.1	1.26	35.3	23.2	1.36	38.4	23.3	1.50
30	19.5	15.7	0.73	23.7	18.5	0.89	26.8	20.4	1.03	30.0	21.4	1.16	33.2	22.1	1.31	35.3	23.2	1.40	38.4	23.3	1.55
40	19.5	15.7	0.76	23.7	18.5	0.94	26.8	20.4	1.08	30.0	21.4	1.22	33.2	22.1	1.37	35.3	23.2	1.47	38.4	23.3	1.63
50	19.5	15.7	0.79	23.7	18.5	0.98	26.8	20.4	1.13	30.0	21.4	1.28	33.2	22.1	1.44	35.3	23.2	1.55	38.4	23.3	1.71
54	19.5	15.7	0.81	23.7	18.5	1.00	26.8	20.4	1.15	30.0	21.4	1.31	33.2	22.1	1.47	35.3	23.2	1.58	38.4	23.3	1.75
58	19.5	15.7	0.82	23.7	18.5	1.02	26.8	20.4	1.18	30.0	21.4	1.34	33.2	22.1	1.50	35.3	23.2	1.61	38.1	23.2	1.75
62	19.5	15.7	0.84	23.7	18.5	1.04	26.8	20.4	1.20	30.0	21.4	1.37	33.2	22.1	1.54	35.3	23.2	1.65	37.5	22.9	1.79
66	19.5	15.7	0.86	23.7	18.5	1.07	26.8	20.4	1.23	30.0	21.4	1.40	33.2	22.1	1.62	35.3	23.2	1.78	36.9	22.6	1.89
70	19.5	15.7	0.88	23.7	18.5	1.09	26.8	20.4	1.29	30.0	21.4	1.51	33.2	22.1	1.76	35.3	23.2	1.93	36.4	22.3	1.99
72	19.5	15.7	0.89	23.7	18.5	1.13	26.8	20.4	1.34	30.0	21.4	1.57	33.2	22.1	1.83	35.3	23.2	2.00	36.1	22.1	2.04
75	19.5	15.7	0.92	23.7	18.5	1.19	26.8	20.4	1.42	30.0	21.4	1.67	33.2	22.1	1.93	35.1	23.1	2.10	35.7	21.9	2.11
79	19.5	15.7	0.99	23.7	18.5	1.28	26.8	20.4	1.53	30.0	21.4	1.80	33.2	22.1	2.09	34.5	22.8	2.20	35.1	21.6	2.22
83	19.5	15.7	1.06	23.7	18.5	1.37	26.8	20.4	1.64	30.0	21.4	1.93	33.2	22.1	2.25	33.9	22.4	2.30	34.5	21.3	2.32
87	19.5	15.7	1.13	23.7	18.5	1.48	26.8	20.4	1.76	30.0	21.4	2.08	33.0	22.0	2.39	33.4	22.1	2.40	34.0	21.0	2.42
91	19.5	15.7	1.21	23.7	18.5	1.58	26.8	20.4	1.89	30.0	21.4	2.23	32.4	21.7	2.49	32.8	21.8	2.50	33.4	20.7	2.52
93	19.5	15.7	1.25	23.7	18.5	1.64	26.8	20.4	1.96	30.0	21.4	2.32	32.1	21.5	2.54	32.5	21.6	2.56	33.1	20.5	2.57
95	19.5	15.7	1.30	23.7	18.5	1.70	26.8	20.4	2.03	30.0	21.4	2.40	31.8	21.2	2.59	32.2	21.2	2.61	32.9	20.1	2.62
99	19.5	15.7	1.39	23.7	18.5	1.82	26.8	20.4	2.18	30.0	21.4	2.58	31.3	20.9	2.70	31.7	20.9	2.71	31.7	19.4	2.71
103	19.5	15.7	1.48	23.7	18.5	1.95	26.8	20.4	2.34	30.0	21.4	2.77	30.4	20.3	2.79	30.4	20.1	2.79	30.4	18.6	2.79
106	19.5	15.7	1.56	23.7	18.5	2.05	26.8	20.4	2.46	28.6	20.4	2.52	28.6	19.2	2.53	28.6	18.9	2.53	28.7	17.6	2.53
110	19.5	15.7	1.67	23.7	18.5	2.20	24.6	18.7	2.20	24.6	17.6	2.20	24.7	16.6	2.21	24.7	16.4	2.21	24.8	15.2	2.21
115	19.5	15.7	1.85	19.6	15.3	1.80	19.7	15.0	1.80	19.7	14.1	1.80	19.8	13.3	1.81	19.8	13.1	1.81	19.8	12.2	1.81
118	16.6	13.4	1.55	16.7	13.0	1.56	16.7	12.8	1.56	16.8	12.0	1.56	16.8	11.3	1.57	16.8	11.2	1.57	16.9	10.0	1.57
122	12.7	10.0	1.23	12.7	10.0	1.24	12.8	9.80	1.24	12.8	9.20	1.24	12.9	8.70	1.25	12.9	8.60	1.25	13.0	8.00	1.25

TC: Total capacity: MBH SHC: Sensible heat capacity: MBH PI: Power input: kW

Notes: 1. is shown as reference.

This table shows the average value of conditions which may occur. This table is based on projection. Actual results may vary according to conditions of use.
 This table is condition.

Heating Capacity for Standard Condition (Tc: 115°F)

						In	door air t	emp. °FE	DВ				
Out	door	6	1	6	5	6	8	7	0	7	2	7	5
	cmp.	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI	TC	PI
°FDB	°FWB	MBH	kW	MBH	kW	MBH	kW	MBH	kW	MBH	kW	MBH	kW
-3.64	-4.0	40.3	7.33	37.8	6.73	35.5	6.17	34.0	5.81	32.5	5.46	30.2	4.95
-1.84	-2.2	40.8	7.19	37.8	6.45	35.5	5.91	34.0	5.57	32.5	5.23	30.2	4.75
5.5	5.0	40.8	6.12	37.8	5.50	35.5	5.06	34.0	4.77	32.5	4.49	30.2	4.09
9.5	8.5	40.8	5.70	37.8	5.13	35.5	4.72	34.0	4.46	32.5	4.20	30.2	3.82
13.0	12.0	40.8	5.34	37.8	4.81	35.5	4.43	34.0	4.18	32.5	3.94	30.2	3.60
15.0	14.0	40.8	5.15	37.8	4.64	35.5	4.28	34.0	4.04	32.5	3.81	30.2	3.48
17.0	15.5	40.8	5.01	37.8	4.52	35.5	4.17	34.0	3.94	32.5	3.72	30.2	3.39
19.0	18.0	40.8	4.80	37.8	4.34	35.5	4.00	34.0	3.78	32.5	3.57	30.2	3.26
22.0	20.0	40.8	4.65	37.8	4.20	35.5	3.88	34.0	3.67	32.5	3.46	30.2	3.16
26.0	24.0	40.8	4.37	37.8	3.95	35.5	3.65	34.0	3.45	32.5	3.26	30.2	2.98
30.0	28.0	40.8	4.12	37.8	3.73	35.5	3.45	34.0	3.26	32.5	3.08	30.2	2.82
35.0	32.0	40.8	3.89	37.8	3.53	35.5	3.26	34.0	3.09	32.5	2.93	30.2	2.68
39.0	36.0	40.8	3.69	37.8	3.35	35.5	3.10	34.0	2.94	32.5	2.78	30.2	2.55
44.0	40.0	40.8	3.51	37.8	3.19	35.5	2.95	34.0	2.80	32.5	2.65	30.2	2.44
47.0	43.0	40.8	3.39	37.8	3.08	35.5	2.85	34.0	2.71	32.5	2.56	30.2	2.35
51.0	47.0	40.8	3.23	37.8	2.94	35.5	2.73	34.0	2.59	32.5	2.45	30.2	2.26
54.0	50.0	40.8	3.13	37.8	2.85	35.5	2.64	34.0	2.51	32.5	2.38	30.2	2.19
57.0	53.0	-	-	37.8	2.76	35.5	2.56	34.0	2.43	32.5	2.31	30.2	2.12
60.0	56.0	-	-	37.8	2.68	35.5	2.49	34.0	2.36	32.5	2.24	30.2	2.06
64.0	60.0	-	-	-	-	-		34.0	2.27	32.5	2.16	30.2	1.99

TC: Total capacity: MBH

PI: Power input: kW

Notes: 1. is shown as reference.
2. This table shows the average value of conditions which may occur. This table is based on projection. Actual results may vary according to conditions of use.
3. shows rated condition.

FTQ42TAVJUD / FTQ42TAVJUA + RZQ42TAVJU

Cooling Capacity for Standard Condition (Te: 43°F)

Outstand	Indoor air temp. °FWB																				
Outdoor		57			61			64			67			70			72			75	
an temp.	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI	TC	SHC	PI
°FDB	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW	MBH	MBH	kW
23	27.3	23.0	1.12	33.2	26.8	1.38	37.6	29.3	1.58	42.0	30.6	1.79	46.4	31.8	2.01	49.4	33.3	2.16	53.8	33.8	2.39
30	27.3	23.0	1.15	33.2	26.8	1.42	37.6	29.3	1.63	42.0	30.6	1.85	46.4	31.8	2.08	49.4	33.3	2.23	53.8	33.8	2.46
40	27.3	23.0	1.21	33.2	26.8	1.49	37.6	29.3	1.71	42.0	30.6	1.94	46.4	31.8	2.18	49.4	33.3	2.34	53.8	33.8	2.59
50	27.3	23.0	1.26	33.2	26.8	1.56	37.6	29.3	1.80	42.0	30.6	2.04	46.4	31.8	2.29	49.4	33.3	2.46	53.8	33.8	2.72
54	27.3	23.0	1.29	33.2	26.8	1.59	37.6	29.3	1.83	42.0	30.6	2.08	46.4	31.8	2.34	49.4	33.3	2.51	53.8	33.8	2.78
58	27.3	23.0	1.31	33.2	26.8	1.63	37.6	29.3	1.87	42.0	30.6	2.13	46.4	31.8	2.39	49.4	33.3	2.57	53.3	33.5	2.79
62	27.3	23.0	1.34	33.2	26.8	1.66	37.6	29.3	1.91	42.0	30.6	2.18	46.4	31.8	2.44	49.4	33.3	2.62	52.5	33.1	2.85
66	27.3	23.0	1.37	33.2	26.8	1.70	37.6	29.3	1.96	42.0	30.6	2.23	46.4	31.8	2.58	49.4	33.3	2.83	51.7	32.6	3.00
70	27.3	23.0	1.39	33.2	26.8	1.73	37.6	29.3	2.05	42.0	30.6	2.41	46.4	31.8	2.79	49.4	33.3	3.07	50.9	32.2	3.16
72	27.3	23.0	1.41	33.2	26.8	1.79	37.6	29.3	2.13	42.0	30.6	2.50	46.4	31.8	2.90	49.4	33.3	3.19	50.5	32.0	3.24
75	27.3	23.0	1.46	33.2	26.8	1.89	37.6	29.3	2.25	42.0	30.6	2.65	46.4	31.8	3.08	49.1	33.2	3.34	49.9	31.7	3.36
79	27.3	23.0	1.57	33.2	26.8	2.04	37.6	29.3	2.43	42.0	30.6	2.86	46.4	31.8	3.32	48.3	32.7	3.50	49.2	31.2	3.52
83	27.3	23.0	1.68	33.2	26.8	2.19	37.6	29.3	2.61	42.0	30.6	3.07	46.4	31.8	3.58	47.5	32.2	3.66	48.4	30.8	3.69
87	27.3	23.0	1.80	33.2	26.8	2.35	37.6	29.3	2.81	42.0	30.6	3.31	46.1	31.6	3.81	46.7	31.7	3.82	47.6	30.3	3.85
91	27.3	23.0	1.93	33.2	26.8	2.52	37.6	29.3	3.01	42.0	30.6	3.55	45.3	31.2	3.97	45.9	31.3	3.98	46.8	29.9	4.01
93	27.3	23.0	1.99	33.2	26.8	2.61	37.6	29.3	3.12	42.0	30.6	3.68	45.0	30.9	4.05	45.5	31.0	4.07	46.4	29.7	4.09
95	27.3	23.0	2.06	33.2	26.8	2.70	37.6	29.3	3.23	42.0	30.6	3.82	44.6	30.5	4.13	45.1	30.5	4.15	46.0	29.0	4.18
99	27.3	23.0	2.20	33.2	26.8	2.89	37.6	29.3	3.47	42.0	30.6	4.10	43.8	30.0	4.29	44.3	30.0	4.31	44.4	28.1	4.31
103	27.3	23.0	2.36	33.2	26.8	3.10	37.6	29.3	3.72	42.0	30.6	4.40	42.5	29.2	4.44	42.5	28.8	4.44	42.6	27.0	4.44
106	27.3	23.0	2.48	33.2	26.8	3.26	37.6	29.3	3.92	40.0	29.2	4.01	40.0	27.5	4.02	40.1	27.2	4.02	40.2	25.5	4.03
110	27.3	23.0	2.65	33.2	26.8	3.50	34.4	26.8	3.50	34.5	25.2	3.50	34.5	23.8	3.51	34.6	23.5	3.51	34.7	22.0	3.52
115	27.3	23.0	2.94	27.4	22.2	2.86	27.5	21.5	2.86	27.6	20.2	2.87	27.7	19.1	2.87	27.7	18.9	2.88	27.8	17.7	2.88
118	23.2	19.6	2.47	23.3	18.9	2.48	23.4	18.3	2.48	23.5	17.2	2.49	23.5	16.3	2.49	23.6	16.1	2.49	23.6	15.0	2.50
122	17.7	15.0	1.96	17.8	14.0	1.97	17.9	14.0	1.97	17.9	13.0	1.98	18.0	12.0	1.98	18.1	12.0	1.98	18.1	12.0	1.99

TC: Total capacity: MBH SHC: Sensible heat capacity: MBH PI: Power input: kW

Notes: 1. is shown as reference.

This table shows the average value of conditions which may occur. This table is based on projection. Actual results may vary according to conditions of use.
 This table is condition.

Heating Capacity for Standard Condition (Tc: 115°F)

		Indoor air temp. °FDB											
out air te	ann	6	1	6	5	6	8	7	0	7	2	7	5
anto	smp.	TC	PI	TC	PI	TC	PI	TC	ΡI	TC	PI	TC	PI
°FDB	°FWB	MBH	kW	MBH	kW	MBH	kW	MBH	kW	MBH	kW	MBH	kW
-3.64	-4.0	40.7	5.84	40.6	6.04	40.5	6.19	40.4	6.28	40.4	6.38	40.3	6.53
-1.84	-2.2	41.9	5.93	41.8	6.12	41.7	6.26	41.7	6.35	41.6	6.45	41.5	6.59
5.5	5.0	46.9	6.22	46.8	6.39	46.7	6.51	46.6	6.60	44.9	6.30	41.8	5.73
9.5	8.5	49.3	6.34	49.2	6.50	49.1	6.62	47.0	6.25	44.9	5.89	41.8	5.36
13.0	12.0	51.7	6.45	51.6	6.60	49.1	6.21	47.0	5.86	44.9	5.53	41.8	5.04
15.0	14.0	53.1	6.50	52.2	6.51	49.1	6.00	47.0	5.66	44.9	5.34	41.8	4.87
17.0	15.5	54.1	6.54	52.2	6.34	49.1	5.84	47.0	5.52	44.9	5.21	41.8	4.75
19.0	18.0	55.8	6.61	52.2	6.08	49.1	5.61	47.0	5.30	44.9	5.00	41.8	4.57
22.0	20.0	56.4	6.52	52.2	5.89	49.1	5.43	47.0	5.14	44.9	4.85	41.8	4.43
26.0	24.0	56.4	6.12	52.2	5.54	49.1	5.11	47.0	4.84	44.9	4.57	41.8	4.18
30.0	28.0	56.4	5.77	52.2	5.22	49.1	4.83	47.0	4.57	44.9	4.32	41.8	3.96
35.0	32.0	56.4	5.45	52.2	4.94	49.1	4.57	47.0	4.33	44.9	4.10	41.8	3.76
39.0	36.0	56.4	5.17	52.2	4.69	49.1	4.35	47.0	4.12	44.9	3.90	41.8	3.58
44.0	40.0	56.4	4.92	52.2	4.47	49.1	4.14	47.0	3.93	44.9	3.72	41.8	3.41
47.0	43.0	56.4	4.74	52.2	4.31	49.1	4.00	47.0	3.79	44.9	3.59	41.8	3.30
51.0	47.0	56.4	4.53	52.2	4.12	49.1	3.82	47.0	3.63	44.9	3.44	41.8	3.16
54.0	50.0	56.4	4.38	52.2	3.99	49.1	3.70	47.0	3.52	44.9	3.33	41.8	3.07
57.0	53.0	-	-	52.2	3.87	49.1	3.59	47.0	3.41	44.9	3.23	41.8	2.98
60.0	56.0	-	-	52.2	3.75	49.1	3.48	47.0	3.31	44.9	3.14	41.8	2.89
64.0	60.0	-	-	-	-	-	-	47.0	3.19	44.9	3.03	41.8	2.79

TC: Total capacity: MBH

PI: Power input: kW

Notes: 1. is shown as reference.
2. This table shows the average value of conditions which may occur. This table is based on projection. Actual results may vary according to conditions of use.
3. shows rated condition.

Option #2 – Code Minimum Air Source Heat Pumps (ASHP) and Second Stage Electric Heat, Refer to Equipment Sheets. Budget Equipment Price - \$13,000, Manufacturer's Representative – DCNE, Attention: Brian LaFramboise, 1-978-977-9911, BLAFRAMBOISE2dcne.com

25HBC5 Comfort[™] 15 Heat Pump with Puron[®] Refrigerant 1-1/2 to 5 Nominal Tons

Option #2 ASHP-1 Meeting, Kitchen, Offices, ASHP- 2 & 3 Apparatus Bays **Outdoor Heat Pumps**

Carrier heat pumps with Puron® refrigerant provide a collection of features unmatched by any other family of equipment. The 25HBC has been designed utilizing Carrier's non-ozone depleting Puron refrigerant.

This product has been designed and manufactured to meet Energy Star® criteria for energy efficiency when matched with appropriate coil components. Refer to the AHRI directory for system combinations that meet Energy Star® guidelines.

NOTE: Ratings contained in this document are subject to change at any time. Always refer to the AHRI directory (www.ahridirectory.org) for the most up-to-date ratings information.

INDUSTRY LEADING FEATURES / BENEFITS

Efficiency

- 14.0 16.0 SEER/ 11.0-13.0 EER / 8.2 9.0 HSPF
- Microtube Technology[™] refrigeration system
- · Indoor air quality accessories available

Sound

- Sound level as low as 69 dBA
- · Sound levels as low as 68 dBA with accessory sound blanket

Comfort

• System supports Edge[®] Thermidistat[™] or standard thermostat controls

Reliability

- Non-ozone depleting Puron® refrigerant
- · Scroll compressor
- · Internal pressure relief valve
- · Internal thermal overload
- · High pressure switch
- · Loss of charge switch
- · Filter drier
- · Balanced refrigeration system for maximum reliability

Durability

WeatherArmor Ultra[™] protection package:

- · Solid, durable sheet metal construction
- · Dense wire coil guard standard
- · Baked-on powder paint

Applications

- Long-line up to 250 feet (76.20 m) total equivalent length, up to 200 feet (60.96 m) condenser above evaporator, or up to 80 ft. (24.38 m) evaporator above condenser (See Longline Guide for more information.)
- Low ambient cooling (down to -10° F/ -23° C) with accessory kit

FB4C Base Series Fan Coil Sizes 018 thru 061

Product Data

Option #2 ASHP-1 Meeting, Kitchen, Officces, ASHP-2 & 3 Indoor Air Handlers Apparatus Bays

A10082

AIR HANDLER TECHNOLOGY AT ITS FINEST

The FB4C fan coil has the proven technology of Carrier fan coil units with Puron® refrigerant as well as vertical and horizontal applications. The design features contoured condensate pans with rugged drain connections, ensuring that little water is left in the unit at the end of the cooling duty cycle. The lack of standing condensate and corrosion free pans improves IAQ and product life, features homeowners appreciate.

Standard features include grooved tubing and louvered fins. Coil circuiting has also been updated to make the most of all Carrier heat pumps and air conditioners. Units come with solid state fan controls, 1–inch (25mm) thick insulation with R-value of 4.2, multi-speed motors, and fully-wettable coils. Units can accommodate factory- and/or field-installed heaters from 3 to 30 kW.

Assembled at the factory compliant with low leak requirements of less than 2% cabinet leakage rate at 0.5 inches W.C. and 1.4% cabinet leakage rate at 0.5 inches W.C. when tested in accordance with ASHRAE 193 standard.

The FB4C fan coil design is loaded with popular features. These fan coils utilize the latest in electronic commutation motor (ECM) technology through the use of high efficiency, multi-tap ECM motors allowing reliable air delivery with increased static pressure. It comes in a pre-painted (taupe metallic) galvanized steel casing and a factory-supplied power plug for ease of installation. The FB4C unit is shipped with a factory-installed Teflon-ring piston FB4CNF(018–048) or a Puron refrigerant TXV FB4CNP (018–061).

PHYSICAL DATA			Ń		K			
UNIT SIZE SERIES	18-30	24-30	30-30	37-30	42-30	48-31	60-30	61-30
Compressor Type				Sc	roll			
REFRIGERANT				Puron [®] ((R-410A)			
Control				TXV (Puron	Hard Shutoff)			
Charge lb (kg)	5.60 (2.54)	7.60 (3.45)	7.00 (3.18)	11.20 (5.08)	8.90 (4.04)	9.87 (4.48)	12.50 (5.67)	13.00 (5.90)
Outdoor Heating Piston #	42	46	52	55	61	TXV	76	65
COND FAN				Propeller Typ	e, Direct Drive		•	
Air Discharge				Ver	tical			
Air Qty (CFM)	2233	3223	3223	3223	3810	4046	4046	4400
Motor HP	1/12	1/12	1/12	1/12	1/5	1/4	1/4	1/3
Motor RPM	800	800	800	810	800	810	800	767
COND COIL		•						
Face Area (Sq ft)	15.09	20.12	20.12	20.10	17.60	20.10	25.15	35.47
Fins per In.	20	20	20	20	20	20	20	20
Rows	1	1	1	2	2	2	2	2
Circuits	4	5	5	8	7	8	9	12
VALVE CONNECT. (In. ID)				•	•			
Vapor	5/8	5/8	3/4	3/4	7/8	7/8	7/8	7/8
Liquid		•		3,	/8"			•
REFRIGERANT TUBES (In. OD)								
Rated Vapor*	5/8	5/8	3/4	3/4	7/8	7/8	1 1/8	1 1/8
Liquid				3	/8			

/ASHP-2 & 3 Outdoor

*Units are rated with 25 ft (7.6 m) of lineset length. See Vapor Line Sizing and Cooling Capacity Loss table when using other sizes and lengths of lineset. Note: See unit Installation Instruction for proper installation.

VAPOR LINE SIZING AND COOLING CAPACITY LOSS

ASHP-1 Outdoor

Acceptable vapor line diameters provide adequate oil return to the compressor while avoiding excessive capacity loss. The suction line diameters shown in the chart below are acceptable for HP systems with Puron refrigerant:

Vapor Line Sizing and Cooling Capacity Losses - Puron® Refrigerant 1- Stage Heat Pump Applications

11-24	Maximum	New end in a				Cooling Total Equiv	g Capacity Lo alent Line Le	oss (%) ngth ft. (m)			
Nominal	Liquid Line Diameters	Diameters	Stan Appli	dard cation		Lon	g Line Appli	cation Requi	res Accessoi	ries	
Size (Bluii)	(In. OD)	(111.) OD	26-50 (7.9-15.2)	51 -80 (15.5-24.4)	81 - 100 (24.7 - 30.5)	101–125 (30.8–38.1)	126–150 (38.4–45.7)	151 - 175 (46.0 - 50.3)	176-200 (53.6-60.0)	201–225 (61.3–68.6)	226-250 (68.9-76.2)
18,000 1 – Stage	3/9	1/2	1	2	3	4	6	7	8	9	10
HP with Puron	3/6	5/8	0	0	1	1	1	2	2	3	3
24,000 1 – Stage	3/8	5/8	0	1	1	2	3	3	4	4	5
HP with Puron	5/6	3/4	0	0	0	0	1	1	1	1	1
30,000		5/8	1	2	3	3	4	5	6	7	8
1-Stage HP with	3/8	3/4	0	0	1	1	1	2	2	2	3
Puron		7/8	0	0	0	0	1	1	1	1	1
37,000		5/8	1	2	4	5	6	7	9	10	11
1-Stage HP with	3/8	3/4	0	0	1	1	2	2	3	3	4
Puron		7/8	0	0	0	0	1	1	1	1	2
42,000 1 – Stage	3/8	3/4	0	1	2	2	3	4	4	5	6
HP with Puron	3/0	7/8	0	0	1	1	1	2	2	2	3
48,000 1 – Stage	3/8	3/4	0	1	2	3	4	5	5	6	7
HP with Puron	5,6	7/8	0	0	1	1	2	2	2	3	3
60,000+		3/4	1	2	4	5	6	7	9	10	11
1-Stage HP with	3/8	7/8	0	1	2	2	3	4	4	5	5
Puron		1-1/8	0	0	0	1	1	1	1	1	1

Standard Length = 80 ft. (24.4 m) or less total equivalent length

Applications in this area are long line. Accessories are required as shown recommended on Long Line Application Guidelines Applications in this area may have height restrictions that limit allowable total equivalent length, when outdoor unit is below indoor unit. See Long Line Application Guidelines

ASHP-1 Indoor

PHYSICAL DATA

	NOMINAL COOLING			SHIPPING	
ORDERING NO.	CAPACITY (Btuh)	Height	Width	Depth	WEIGHT
FB4CN(F,P)018L	18,000	42–11/16 in. 1084mm	14—5/16 in. 363mm	22—1/16 in. 560mm	112 lb 51 kg
FB4CNF024L	24,000	42–11/16 in. 1084mm	14—5/16 in. 363mm	22—1/16 in. 560mm	112 lb 51 kg
FB4CNP025L	24,000	49—5/8 in. 1260mm	17—5/8 in. 447mm	22—1/16 in. 560mm	122 lb 55 kg
FB4CN(F,P)030L	30,000	49–5/8 in. 1260mm	17—5/8 in. 447mm	22—1/16 in. 560mm	122 lb 55 kg
FB4CN(F,P)036L	36,000	49–5/8 in. 1260mm	17—5/8 in. 447mm	22—1/16 in. 560mm	122 lb 55 kg
FB4CN(F,P)042L	42,000	49–5/8 in. 1260mm	21—1/8 in. 536mm	22—1/16 in. 560mm	157 lb 71 kg
FB4CN(F,P)048L	48,000	49–5/8 in. 1260mm	21—1/8 in. 536mm	22—1/16 in. 560mm	157 lb 71 kg
FB4CNP060L	60,000	53—7/16 in. 1357mm	21—1/8 in. 536mm	22—1/16 in. 560mm	175 lb 79 kg
FB4CNP061L	60,000	59–3/16 in. 1503mm	24—11/16 in. 447mm	22—1/16 in. 560mm	201 lb 91 kg

SPECIFICATIONS

FB4C	18	24	25	<mark>30</mark>	36	<mark>42</mark>	48	60	61					
EVAPORATOR COIL	EVAPORATOR COIL													
Face Area (sq. ft)	2.	23	2.97	2.	97	4.4	45	5.93	7.42					
Configuration			Slope				Å							
FB4CNF Metering Device (Teflon-ring piston) Puron Refrigerant	EA52PT049	EA52PT055	N/A	EA52PT061	EA52PT067	EA52PT076	EA52PT080	N/A	N/A					
FB4CNP Metering Device Puron Refrigerant	тхv	тхv	тхv	тхv	TXV	тхv	TXV	TXV	TXV					
FILTER*														
21–1/2–in (546 mm) X	13- (330	–in mm)	16–3/8–in (417 mm)	16—3 (417	/8—in mm)		19–7/8–in (505 mm)		23–5/16–in (585 mm)					
BLOWER ASSEMBLY														
Motor Type (ECM)	I) Multi-tap ECM													
Motor HP	1/3	1/3	1/3	1/3	1/2	1/2	3/4	3/4	3/4					
CFM	600	800	800	1000	1200	1400	1600	1750	2000					

*Filter must be field-supplied for FB4C units.

ASHP-1 Outdoor Lectrical data

	V/DU	OPER V	OLTS*	COM	IPR	FAN	МСА	MAX FUSE† or
UNIT SIZE	V/PH	MAX	MIN	LRA	RLA	FLA	IVICA	BRK AMPS
18-30				48.0	9.0	0.50	11.8	20
24-30				58.3	12.8	0.50	16.5	25
30-30				73.0 14.1	14.1	0.50	18.1	30
37-30	008/000/1	050	107	75.0	16.8	0.60	21.6	35
<mark>42-30</mark>	200/230/1	253	197	109.0	21.1	1.20	27.6	40
/ 48-31				130.0	24.4	1.30	31.8	45
60-30				134.0	26.4	1.20	34.2	50
61-30			152.5 24.9 2.80		2.80	33.9	50	

Permissible limits of the voltage range at which the unit will operate satisfactorily

† Time-Delay fuse.

FLA - Full Load Amps

LRA - Locked Rotor Amps

MCA – Minimum Circuit Amps

RLA – Rated Load Amps

NOTE: Control circuit is 24–V on all units and requires external power source. Copper wire must be used from service disconnect to unit. All motors/compressors contain internal overload protection.

Complies with 2007 requirements of ASHRAE Standards 90.1

ASHP-2 & 3 Outdoor

A-WEIGHTED SOUND POWER (dBA)

		TYPICAL OCTAVE BAND SPECTRUM (dB, without tone adjustment)										
UNIT SIZE	dBA	125	250	500	1000	2000	4000	8000				
18-30	73	49.5	60.0	65.0	69.0	65.5	62.0	55.0				
24-30	69	48.5	59.5	61.5	62.5	61.0	59.0	53.5				
30-30	71	51.0	58.5	61.5	65.5	62.5	60.0	53.5				
37-30	72	67.7	66.8	68.1	69.9	62.8	60.3	55.2				
42-30	74	56.5	64.0	67.0	68.5	65.0	62.0	57.5				
48-31	73	67.5	67.8	70.1	70.6	63.1	58.5	53.3				
60-30	74	59.0	62.0	65.0	68.0	65.0	62.5	62.0				
61–30	70	61.7	65.6	68.1	65.8	59.8	58.4	56.1				

NOTE: 37 size tested in accordance with AHRI Standard 270-2008 (not listed in AHRI). All other sizes tested in accordance with AHRI Standard 270-1995 (not listed in AHRI).

A-WEIGHTED SOUND POWER (dBA) WITH ACCESSORY SOUND SHIELD

	STANDARD	TYPICAL OCTAVE BAND SPECTRUM (dB, without tone adjustment)										
UNIT SIZE	dBA	125	250	500	1000	2000	4000	8000				
18-30	72	50.5	60.0	65.0	67.5	64.5	61.5	53.5				
24-30	68	49.5	58.5	61.5	62.0	61.0	58.5	51.5				
30-30	69	50.5	58.5	61.5	64.0	61.5	58.5	51.5				
37-30	71	68.2	66.4	67.5	68.4	59.6	58.2	52.4				
42-30	72	56.5	64.5	66.5	66.5	64.5	61.0	54.5				
48-31	71	68.4	67.7	69.7	67.6	59.4	56.4	50.0				
60-30	73	58.5	62.5	65.0	67.0	64.0	61.0	56.5				
61–30	69	63.7	65.4	67.3	64.9	58.3	56.2	51.9				

NOTE: 37 size tested in accordance with AHRI Standard 270-2008 (not listed in AHRI). All other sizes tested in accordance with AHRI Standard 270-1995 (not listed in AHRI).

CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

UNIT SIZE-SERIES	REQUIRED SUBCOOLING °F (°C)
18-30	12 (6.7)
24-30	13 (7.2)
30-30	10 (5.6)
37–30	10 (5.6)
42-30	12 (6.7)
48-31	9 (5.0)
60-30	13 (7.2)
61–30	7 (3.9)

SHIPPING SHIPPING SHIPPING WEIGHT (Sq.)	Lbs Kgs INCH MM INCH MM 207 03.0 33.5/16 84.6.6 33.3/16 84.3.4	233 105.7 37 1/8 943.1 36 5/8 929.5	242 109.8 37 1/8 943.1 36 5/8 929.5	253 114.8 37 1/8 943.1 36 5/8 929.5	290 131.5 37 1/8 943.1 33 3/16 843.1	2/6 125.2 3/ 1/8 943.1 36 5/8 929.5 2/6 156.6 27 1/8 0421 42 2/8 14022	334 151.5 37 1/8 943.1 50 3/16 1274.9	ASH	HP-1, 2 & 3 Outdoor	n (N.S.R.) spsssa REV. D
J K OPERATING WEIGHT	1 MM INCH MM Lbs Kgs 3810 11 355.6 160 757	4 425.5 16 1/2 419.1 200 90.7	406.4 15 1/2 393.7 196 88.9	2 444.5 13 3/4 349.3 215 97.5	4 425.5 14 3/4 374.7 245 111.1	45/.2 14 //8 3//.8 238 108.0 4 4426 46 4/4 4626 204 4224	4 412.8 19 482.6 288 130.6	ES: ENTER OF GRAVITY	AIR IN AIR DISCHARGE	CCN: Not Subject to Regulation
	MM INCH MM INCH MM INCH 28.2 3.13/16 07.4 16 4/06.4 15	28.2 313/16 97.4 15 3/4 400.1 16 3/	28.2 313/16 97.4 16 1/4 412.8 16	28.2 3 13/16 97.4 17 3/8 441.3 17 1/	28.2 3 13/16 97.4 17 431.8 16 3/	28.2 3 13/16 9/.4 16 1/8 409.6 18 28.2 3 13/16 9/.4 16 1/8 409.6 18	28.2 313/16 97.4 17 7/8 454.0 16 1/			N INCH (MM) U.S. EC
ш	MM INCH MM INCH MM INCH Ee1 211114 E2E 3 0 1/8 2313 1 1/8	66.1 28 7/16 722.8 9 1/8 231.3 1 1/8	66.1 28 7/16 722.8 9 1/8 231.3 1 1/8	66.1 28 7/16 722.8 9 1/8 231.3 1 1/8	66.1 28 7/16 722.8 9 1/8 231.3 1 1/8	06.1 28 //16 /22.8 9 1/8 231.3 1 1/8 ee1 2e 7/4e 722 e 0 1/e 231.3 1 1/8	66.1 28 7/16 722.8 9 1/8 231.3 1 1/8	Ţ		NOTE: ALL DIMENSIONS II
C B	INCH MM INCH MM INCH MM INCH	0 32 1/16 815.1 5/8 15.9 6 9/16	0 32 1/16 815.1 3/4 19.1 6 9/16	0 32 1/16 815.1 3/4 19.1 6 9/16	0 28 11/16 728.7 7/8 22.2 6 9/16	0 32 1/16 815.1 //8 22.2 6 9/16 7	0 45 11/16 1160.5 7/8 22.2 6 9/16	A SO.	AIR DISCHARGE	7/16 518.5 15/16 583.2 3/4 679.7
SERIES ELECTRICAL A CHARACTERISTICS	24 0 V N N 31 346 700	51 0 Y N N 35 889.	51 0 Y N N N 35 889.	0 V N N 35 889.	51 0 Y N N N 35 889.	2000 22 N N N 7 1 0			FIELD POWER SUPPLY CONN. Ø 11/8* (Ø 28.6) KNOCKOUT Ø 11/8* (Ø 28.6) KNOCKOUT Ø 11/8* (Ø 28.2) HOLE WITH Ø 11/8* (Ø 29.5) HOLE WITH Ø 3/4* Ø 3/4* Ø 2 VAPOR LINE CONN MNNUMENEND MONENTING Ø 2 VAPOR LINE CONN MNNUMENEND MONENTING	25 3/4 654.0 20 31 3/16 792.5 22 3.60.61 35 889.0 26
UNIT	25HBC518A003006	25HBC524A003006	25HBC530A003006	25HBC537A003001	25HBC542A003006	25HBC548B0U3101	25HBC561A003001		9	- 18 24 30 37 42 48

ASHP-1, 2 & 3 Indoor

DIMENSIONS

Fig. 1 - FB4CNP - English

A150081

ELECTRIC HEATER INTERNAL PROTECTION

HEATER KW	PHASE	FUSE QTY/SIZE	CKT BKR* QTY/SIZE
5	1		1/60
8	1		1/60
9	1/3		
1 0	1		1/60
15	1	2/30–2/60	2/60
15	3		_
/ ₁₈	3		
20	1	4/60	2/60
24	1/3	6/60	
30	1/3	6/60	

*All circuit breakers are 2 pole.

When using units with 20–, 24–, and 30–kW electric heaters, maintain a 1–in. (25mm) clearance from combustible materials to discharge plenum and ductwork and maintain a distance of 36–in (914mm) from the unit. Use an accessory downflow base to maintain proper clearance on downflow installations. Use flexible connectors between ductwork and unit to prevent transmission of vibration. When electric heater is installed, use heat resistant material for flexible connector between ductwork and unit at discharge connection. Ductwork passing through unconditioned space must be insulated and covered with vapor barrier.

ASHP-2 & 3 Indoor

ACCESSORIES

	ITEM	ACCESSORY PART NO.*	FAN COIL SIZE USED WITH
1.	Disconnect Kit	KFADK0201DSC	All single phase 3kW – 10kW heaters
		KFACB0101CFB	018, 024
2	Downflow Roop Kit	KFACB0201CFB	025, 030, 036
<u> </u>	DOWINIOW Base Rit	KFACB0301CFB	042, 048, 060
		KFACB0401CFB	061
2	Downflow Conversion Kit [†]	KFADC0201SLP	Slope Coil Units-018, 024, 030, 036
3.	Downliow Conversion Rit	KFADC0401ACL	A–Coil Units—042, 048, 060, 061
4.	Downflow/Horizontal Conversion Gasket Kit	KFAHD0101SLP	All
5.	Horizontal Water Management Kit (25 pack) ‡	KFAHC0125AAA	A–Coil Units–042, 048, 060, 061
6.	Single-Point Wiring Kit	KFASP0101SPK	Only with 15– and 20–kW Fused Heaters
		KFAFK0112SML	018, 024
-	Filter Kit (10 Deels)	KFAFK0212MED	025, 030, 036
1.	Filter Kit (12 Pack)	KFAFK0312LRG	042, 048, 060
		KFAFK0412XXL	061
	Face Oall Filler Oakland	FNCCABCC0014 (FILXXFNC0014)	018, 024
8.	Fan Coll Filter Cabinet	FNCCABCC0017 (FILXXFNC0017)	030, 036
	(Fair Coir Filter Media)	FNCCABCC0021 (FILXXFNC0021)	042, 048, 060
9.	PVC Condensate Trap Kit (50 pack)	KFAET0150ETK	All
10.	Air Cleaner 240–volt Conversion Kit	KEAVC0201240	All
		KFAFR0101FRM	018, 024
11	Standard Filter Back Kit	KFAFR0201FRM	025, 030, 036
	Standard Filter Hack Nit	KFAFR0301FRM	042, 048, 060
		KFAFR0401FRM	061
	TXI/ Kit Burran (B. 4104) Conner and Tin Caile	KSATX0201PUR	018, 024, 025, 030
12.	Only	KSATX0301PUR	036, 042
	Only	KSATX0401PUR	048
		KSATX0601HSO	018, 024, 025, 030, 036, 042
13.	TXV Kit R–22, Copper and Tin Coils Only	KSATX0701HSO	048
		KSATX1001HSO	060, 061
		KSBTX0201PUR	018L, 024L, 025L, 030L
14.	TXV Kit, Puron (R–410A), Aluminum Coils Only	KSBTX0301PUR	036L, 042L
		KSBTX0401PUR	048L
		KSBTX0601HSO	018L, 024L, 030L, 036L, 042L
15.	TXV Kit R–22, Aluminum Coils Only	KSBTX0701HSO	048L
		KSBTX1001HSO	060L, 061L
16.	Door Gasket Kit **	344994-751	All

* Factory authorized and listed, field-installed.

** This kit is for replacement of factory installed gaskets if they are damaged or removed from the fan coil. †

KFAHD0101SLP must also be purchased for downflow applications.

‡ KFAHD0101SLP must also be purchased for downflow or horizontal applications.

Option #3 – Water Source Heat Pump System, Refer to Equipment Submittal Sheets. Budget Equipment Price - \$17,000, Manufacturer's Representative – HTS New England, Attention: Derek Anneser, 1-978-977-9911, <u>Derek.Anneser@hts.com</u>

Geothermal Borehole estimate \$37,000. Contact Cushing and Sons, Bart Cushing, 1-800-831-8883, <u>Bart@CushingAndSons.com</u>

Option #3 Ground Source Heat Pumps GSHP-1, 2 & 3

Geothermal heat pump 1-6 ton (single speed) 2-6 ton (dual capacity)

Submittal Data English Language/IP Units SD2500AN 11/17

Option #3 Ground Source Heat Pumps GSHP-1, 2 & 3

P.O.: _

Contractor:_____

5 Series 500A11 1-6 Ton 60Hz

Engineer:_

Project Name:_____

_____Unit Tag: _____

Smarter from the Ground Up"

Model Nomenclature

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's ophion or commendation of its product. The latest version of this document is available at wwwaterfurnace.com.

GSHP-1 SIZE 042, GSHP-2 & 3 SIZE 048

Contractor:______ P.O.: _____

Engineer:_

Project Name: ______ Unit Tag: __

AHRI/ISO 13256-1 Performance Ratings

Variable Speed ECM or 5-Speed ECM Motor

AHRI/ASHRAE/ISO 13256-1 English (IP) Units

		-	Wat	Grou	Heat Pum	р	Ground Loop Heat Pump								
Model	Capacity Modulation	Flow	v Rate	Coo EWT a	Heatiı EWT 68	Heating EWT 68° F		ling 59° F	Heating EWT 50° F		Cooling I Full Load Part Load	Brine 77° F 68° F	Heating Brine Full Load 32°F Part Load 41°F		
		gpm	cfm	Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР	Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР	Capacity Btuh	EER	Heating Capacity	СОР
026	Full	8	950	24,900	16.8	30,100	5.5	27,700	24.0	23,900	4.8	26,400	19.6	19,500	4.0
026	Part	7	750	18,900	18.6	22,000	6.1	22,200	29.7	17,500	4.9	21,000	26.0	16,400	4.5
038	Full	9	1300	36,500	17.0	43,300	5.5	40,000	24.4	35,000	4.9	38,200	19.7	28,500	4.2
038	Part	8	1150	26,500	19.0	31,300	6.4	29,900	32.1	24,900	5.1	29,500	28.0	22,900	4.8
049	Full	12	1600	49,100	17.2	59,000	5.5	54,100	24.5	47,200	4.6	50,800	19.3	38,200	4.0
049	Part	11	1400	36,300	19.1	41,700	6.1	41,600	33.0	33,600	4.7	39,800	27.4	31,000	4.4
064	Full	16	1800	62,300	16.4	73,900	5.2	69,000	23.9	60,400	4.6	65,500	19.3	47,300	3.8
064	Part	14	1500	45,800	18.1	53,200	5.9	53,000	30.7	43,500	4.8	50,500	26.5	38,200	4.3
072	Full	18	2000	70,100	15.6	88,000	4.8	79,000	22.0	71,000	4.3	73,800	18.2	55,400	3.7
072	Part	16	1500	54,200	17.0	66,000	5.1	61,500	27.6	52,700	4.3	59,400	24.9	47,400	3.9
018	Single	5	600	17,400	15.7	23,000	5.3	20,600	26.0	18,700	4.6	18,500	18.3	14,500	3.8
022	Single	8	800	18,100	15.6	23,700	6.0	21,900	27.5	19,500	5.0	19,200	18.7	15,000	4.0
030	Single	8	1000	27,000	18.9	32,900	5.6	31,200	29.5	26,000	4.8	28,100	22.0	20,500	3.9
036	Single	9	1200	32,300	18.8	36,500	5.7	36,800	28.8	29,200	4.9	33,700	22.0	24,400	4.2
042	Single	11	1300	39,000	18.6	45,600	5.8	43,900	28.1	36,100	4.9	40,700	21.7	28,900	4.0
048	Single	12	1500	44,100	16.3	55,600	5.4	50,300	25.9	44,700	4.7	45,900	18.8	36,400	4.0
060	Single	15	1800	61,100	16.4	74,100	5.5	66,900	24.3	59,200	4.7	62,200	18.4	47,900	4.0
070	Single	18	2000	66,200	15.3	85,000	5.0	75,000	22.9	68,000	4.4	69,100	17.6	54,000	3.7

NOTE: 018 not available with 5-Speed ECM motor

Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature Heating capacities based upon 68°F DB, 59°F WB entering air temperature All ratings based upon 208V operation 7/15/2015

5 Series 500A11

Water Funces. (1

Smarter from the Ground Up™

1-6 Ton 60Hz

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.

GSHP-2 & 3 SIZE 048 Apparatus Bays

5 Series 500A11 1-6 Ton 60Hz

Matar Funces. (1) Smarter from the Ground Up™

Vertical Dimensional Data

Top Air Discharge

								or Connections				E Co	lectric nnecti	al ons	Discharge Connection					Return Connection			
Verti Top F	cal Iow	Over	all Cal	oinet			water	Conne	ections	S		l 3/4 in.	J 1/2 in.	K 1/2 in.	duct flange installed (.10 in)	usin	g sta c rack (±	0.10 in)
Mod	lel	Α	В	С	D	Е	F	G	н	Loop	HWG	cond	cond	cond	L	М	Ν	0	Р	Q	R	S	Т
		Width	Depth	Height	Loop In	Loop Out	HWG In	HWG Out	Cond- ensate	Water FPT	Sweat (I.D.)	Power Supply	Ext Pump	Low Voltage			Supply Width	Supply Depth			Return Depth	Return Height	
012	012 in. 22.2 22.5 34.5 2.3 5.3 11.9 14.9 8.6 1 in. 1/2 in. 6.9 9.4 11.7 6.1 3.7 10.0 10.0 0.7 2.4 18.1 14.2 1.7 in. 56.4 57.2 87.6 5.9 13.5 30.2 37.8 21.8 Swivel Female 17.5 23.9 29.7 15.5 9.4 25.4 25.4 18.61 46.0 36.1 4.3																						
012 cm. 56.4 57.2 87.6 5.9 13.5 30.2 37.8 21.8 Swivel Female 17.5 23.9 29.7 15.5 9.4 25.4 25.4 1.8 6.1 46.0 36.1 4.3															4.3								
010	in.	22.5	26.5	39.4	2.3	5.3	13.4	16.4	9.6	1 in.	1/2 in.	6.9	9.4	11.7	6.3	0.7	14.0	14.0	2.7	2.3	22.0	18.0	2.0
018	cm.	57.2	67.3	100.1	5.8	13.5	34.0	41.7	24.4	Swivel	Female	17.5	23.9	29.7	16.0	1.8	35.6	35.6	6.9	5.8	55.9	45.7	5.1
022-	in.	22.5	26.5	48.5	2.0	7.0	13.5	16.5	10.2	1 in.	1/2 in.	9.5	12.1	14.3	6.1	0.8	14.0	14.0	4.4	1.7	22.2	26.0	1.7
030	cm.	57.2	67.3	123.2	5.1	17.8	34.3	41.9	25.9	Swivel	Female	24.1	30.7	36.3	15.5	2.0	35.6	35.6	11.2	4.3	56.4	66.0	4.3
036-	in.	25.6	31.6	50.4	2.3	7.3	15.9	18.9	10.6	1 in.	1/2 in.	9.5	12.1	14.3	6.9	1.1	18.0	18.0	3.8	1.7	28.1	26.0	1.7
038	cm.	65.0	80.3	128.0	5.8	18.5	40.4	48.0	26.9	Swivel	Female	24.1	30.7	36.3	17.5	2.8	45.7	45.7	9.7	4.3	71.4	66.0	4.3
042-	in.	25.6	31.6	54.4	2.3	7.3	15.9	18.9	10.6	1 in.	1/2 in.	9.5	12.1	14.3	6.9	1.1	18.0	18.0	3.8	1.7	28.1	30.0	1.7
049 cm. 65.0 80.3 138.2 5.8 18.5 40.4 48.0 26.9 Swivel Female 24.1 30.7 36.3 17.5 2.8 45.7 45.7 9.7													9.7	4.3	71.4	76.2	4.3						
060-	in.	25.6	31.6	58.4	2.3	7.3	15.9	18.9	10.6	1 in.	1/2 in.	9.5	12.1	14.3	6.9	1.1	18.0	18.0	3.8	1.7	28.1	34.0	1.7
072	cm.	65.0	80.3	148.3	5.8	18.5	40.4	48.0	26.9	Swivel	Female	24.1	30.7	36.3	17.5	2.8	45.7	45.7	9.7	4.3	71.4	86.4	4.3
Conde	ensat	e is 3/	4 in. P'	VC ferr	nale gli	ue soc	ket and	d is sw	itchab	le fron	n side	to fron	t										7/11/12

Condensate is 3/4 in. PVC female glue socket and is switchable from side to front

Unit shipped with deluxe 2 in. (field adjustable to 1 in.) duct collar/filter rack extending from unit 3.25 in. and is suitable for duct connection.

Discharge flange is field installed and extends 1 in. [25.4 mm] from cabinet

Decorative molding and/or water connections extend 1.2 in. [30.5 mm] beyond front of cabinet.

Top panel has 1.375 in. and 1.125 in. knockouts for electrical connections.

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.

GSHP-1 SIZE 042 Meeting, Kitchen, and Offices

TOP VIEW

Horizontal Dimensional Data

- H

AS SHOWN LR UNIT (RR UNIT ON OPPOSITE SIDE—SAME DIMENSIONS)

		Ove	verall Cabinet Water Connections									E Co	lectric nnecti	al ons	Disc duc	harge t flang	Conne	ction	Return Connection using std deluxe filter			
Horiz	ontal											 7/4 in	J 1/2 in	K 1/2 in		(±0.1	0 in)		rack (±0.10 in)			
Mo	del	Α	в	С	D	E	F	G	н	Loop	HWG	cond	cond	cond	L	м	N	0	Р	Q	R	s
		Width	Depth	Height	In	Out	HWG In	HWG Out	Cond- ensate	Water FPT	Sweat (I.D.)	Power Supply	Ext Pump	Low Voltage		Supply Height	Supply Depth			Return Depth	Return Height	
012 in. 22.5 44.0 17.3 2.3 5.3 11.9 14.9 8.0 1 in. 1/2 in. 6.9 9.5 11.7 4.1 7.3 9.7 5.8 1.7 17.8 14.6															1.4							
012 cm. 57.2 111.8 43.9 5.8 13.5 30.2 37.8 20.3 Swivel Female 17.5 24.1 29.7 10.4 18.5 24.6 14.7 4.3 45.2 37.1														37.1	3.6							
010	in.	22.5	53.0	19.3	2.3	5.3	13.8	16.8	8.0	1 in.	1/2 in.	6.9	9.5	11.7	1.8	10.5	9.5	8.2	2.2	21.8	16.5	1.5
018	cm.	57.2	134.6	49.0	5.8	13.5	35.1	42.7	20.3	Swivel	Female	17.5	24.1	29.7	4.6	26.7	24.1	20.8	5.6	55.4	41.9	3.8
022-	in.	22.5	63.0	19.3	2.0	7.0	13.5	16.5	0.8	1 in.	1/2 in.	9.5	12.1	14.3	2.3	10.5	9.4	5.8	2.8	30.5	16.9	1.3
030	cm.	57.2	160.0	49.0	5.1	17.8	34.3	41.9	2.0	Swivel	Female	24.1	30.7	36.3	5.8	26.7	23.9	14.7	7.1	77.5	42.9	3.3
036-	in.	25.6	72.0	21.3	2.3	7.3	15.9	18.9	0.8	1 in.	1/2 in.	9.5	12.1	14.3	SEE	13.6	13.2	SEE	2.8	35.5	18.9	1.3
038	cm.	65.0	182.9	54.1	5.8	18.5	40.4	48.0	2.0	Swivel	Female	24.1	30.7	36.3	CHART	34.5	33.5	CHART	7.1	90.2	48.0	3.3
042-	in.	25.6	77.0	21.3	2.3	7.3	15.9	18.9	0.8	1 in.	1/2 in.	9.5	12.1	14.3	SEE	13.6	13.2	SEE	2.8	40.4	18.9	1.3
049 cm. 65.0 195.6 54.1 5.8 18.5 40.4 48.0 2.0 Swivel Female 24.1 30.7 36.3 CHART 34.5 33.5												CHART	7.1	102.6	48.0	3.3						
060- in. 25.6 82.0 21.3 2.3 7.3 15.9 18.9 0.8 1 in. 1/2 in. 9.5 12.1 14.3 SEE 13.6 13.2 SEE 2.8 45.4 18.9													18.9	1.3								
072	072 cm. 65.0 208.3 54.1 5.8 18.5 40.4 48.0 2.0 Swivel Female 24.1 30.7 36.3 CHART 34.5 33.5 CHART 7.1 115.3 48.0 3.3																					
Condensate is 3/4 in. PVC female glue socket and is switchable from side to front 7/11/12												7/11/12										

Unit shipped with deluxe 2 in. (field adjustable to 1 in.) duct collar/filter rack extending from unit 3.25 in. and is suitable for duct connection. Discharge flange is field installed and extends 1 in. [25.4mm] from cabinet

Decorative molding and/or water connections extend 1.2 in. [30.5mm] beyond front of cabinet.

Units Not Shown Above		L	0
Dight Datum End Discharge	in	2.8	4.6
Right Return End Discharge	cm	7.1	11.8
Dight Dotum Side Discharge	in	4.9	6.9
Right Return Side Discharge	cm	12.4	17.5
Left Deturn End Discharge	in	4.9	7.6
Left Return End Discharge	cm	12.4	19.4
Left Detune Cide Discharge	in	2.8	6.9
Left Return Side Discharge	cm	7.1	17.5

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.

[4.8cm]

КJ

Contractor:	_ P.O.:
Engineer:	

Project Name:_____Unit Tag: ___

5 Series 500A11 1-6 Ton 60Hz

Smarter from the Ground Up"

Physical Data

Single Speed

SINGLE SPEED										
Model		012	018	022	030	036	<mark>042</mark>	<mark>048</mark>	060	070
Compressor (1 each)		Rot	ary				Scroll			
Factory Charge R410a, oz [kg]	Vortical	76 [102]	42 [110]	E6 [1E0]	64 [1 01]	02 [2 72]	04 [2 70]	02 [260]	112 [7]171	174 [7 70]
(Aluminum tube and fin air coil)	vertical	30 [1.02]	42 [1.19]	50 [1.56]	04 [1.01]	02 [2.32]	04 [2.30]	92 [2.00]	112 [3.17]	134 [3.79]
Factory Charge R410a, oz [kg]	Horizontal	36 [102]	42 [119]	54 [153]	64 [181]	76 [215]	84 [2,38]	92 [2 60]	88 [2 49]	110 [3 11]
(Aluminum tube and fin air coil)		00 [02]		01 [100]		, 0 [20]	01 [2:00]	02 [2:00]	00 [2:10]	
Blower Motor & Blower	· · · · · · · · · · · · · · · · · · ·		1							
	VS ECM	n/a		1		Variable	Speed ECM			
Blower Motor Type/Speeds	5-Spd ECM	n/a	n/a				5 Speed EC	Ч		
	PSC	PSC -				PSC -	3 Speeds			
	VS ECM	n/a	1/2 [373]	1/2 [373]	1/2 [373]	1/2 [373]	1/2 [373]	1/2 [373]	1 [746]	1[746]
Blower Motor- hp [W]	5-Spd ECM	n/a	n/a	1/2 [373]	1/2 [373]	1/2 [373]	1[746]	1[746]	1[746]	1[746]
	PSC	1/10 [75]	1/6 [134]	1/5 [149]	1/3 [249]	1/2 [373]	1/2 [373]	1/2 [373]	1[746]	1[746]
	VS ECM	n/a	n/a	n/a	n/a	1[746]	1[746]	1[746]	n/a	n/a
High Static Blower Motor - hp [W]	PSC	n/a	n/a	1/ [249]	1/3 [249]	1/2 [373]	3/4 [560]	3/4 [560]	n/a	n/a
	VS ECM &		9 x 7	9 x 7	9 x 7	11 x 10	11 x 10	11 x 10	11 x 10	11 x 10
Blower Wheel Size	5-Spd ECM	n/a	[229 x 178]	[229 x 178]	[229 x 178]	[279 x 254]	[279 x 254]	[279 x 254]	[279 x 254]	[279 x 254]
(Dia x W), in, [mm]		6 x 8	9 x 7	9 x 7	9 x 7	10 x 10	10 x 10	10 x 10	11 x 10	11 x 10
	PSC	[152 x 203]	[229 x 178]	[229 x 178]	[229 x 178]	[254 x 254]	[254 x 254]	[254 x 254]	[279 x 254]	[279 x 254]
		[2		11 x 10	11 x 10	11 x 10	2	
High Static Blower Wheel Size	VS ECM	n/a	n/a	n/a	n/a	[279 x 254]	[279 x 254]	[279 x 254]	n/a	n/a
(Dia x W), in, [mm]				9 x 7	9 x 7	10 x 10	10 x 10	10 x 10		
	PSC	n/a	n/a	[229 x 178]	[229 x 178]	[254 x 254]	[254 x 254]	[254 x 254]	n/a	n/a
Coax and Water Piping										
Water Connections Size - Swivel -	in [mm]	1" [25.4]	1" [25.4]	1" [25.4]	1" [25.4]	1" [25.4]	1" [25.4]	1" [25.4]	1" [25.4]	1" [25.4]
HWG Connection Size - Female Sv	veat I.D.	1	1 /01 510 73	1 (01 510 73	1 (01) 510 73	1 /01 510 73	1 (01 510 77	1 (01) 510 73	1 (01) 510 77	1 /01 510 73
- in [mm]		n/a	1/2" [12./]	1/2" [12./]	1/2" [12./]	1/2" [12.7]	1/2" [12./]	[1/2" [12./]	1/2" [12./]	1/2" [12.7]
Coax & Piping Water Volume - gal	[1]	0.35 [1.3]	0.40 [1.5]	0.7 [2.6]	1.0 [3.8]	1.3 [4.9]	1.3 [4.9]	1.6 [6.1]	1.6 [6.1]	2.3 [8.7]
Vertical										
Air Coil Dimonsions (H x W) in Fr	~~~]	16 x 16	19 x 20	24 x 20	28 x 20	28 x 25	32 x 25	32 x 25	36 x 25	36 x 25
Air con Dimensions (A x w); in. [i		[406 x 406]	[483 x 508]	[610 x 542]	[711 x 542]	[711 x 635]	[813 x 635]	[813 x 635]	[914 x 635]	[914 x 635]
Air Coil Total Face Area, ft2 [m2]		1.8 [0.167]	2.6 [0.242]	3.3 [0.310]	3.9 [0.362]	4.9 [0.451]	5.6 [0.570]	5.6 [0.570]	6.3 [0.641]	6.3 [0.641]
Air Coil Tube Size, in [mm]		3/8 [9.5]	5/16 [7.9]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]
Air Coil Number of rows		3	3	3	3	3	3	3	4	4
Filter Standard - 2" [51mm]		16 x 20	20 x 24	28 x 24	28 x 24	28 x 30	32 x 30	32 x 30	36 x 30	36 x 30
Pleated MERV11 Throwaway, in [mn	n]	[406 x 508]	[508 x 610]	[712 x 610]	[712 x 610]	[712 x 762]	[813 x 762]	[813 x 762]	[914 x 762]	[914 x 762]
Weight - Operating, Ib [kg]		165 [75]	200 [91]	293 [133]	308 [140]	353 [160]	368 [167]	408 [185]	443 [201]	468 [212]
Weight - Packaged, lb [kg]		185 [84]	220 [100]	313 [142]	328 [149]	373 [169]	388 [176]	428 [194]	463 [210]	488 [221]
Horizontal		1	1	1		1	1	1	1	
Air Coil Dimensions (H x W) in [r	nml	16 x 16	18 x 21	18 x 27	18 x 30	20 x 35	20 x 40	20 x 40	20 x 45	20 x 45
		[406 x 406]	[457 x 533]	[457 x 686]	[457 x 762]	[508 x 889]	[508 x 1016]	[508 x 1016]	[508 x 1143]	[508 x 1143]
Air Coil Total Face Area, ft2 [m2]		1.8 [0.167]	2.6 [0.242]	3.4 [0.316]	3.9 [0.362]	4.9 [0.451]	5.6 [0.570]	5.6 [0.570]	6.3 [0.641]	6.3 [0.641]
Air Coil Tube Size, in [mm]		3/8 [9.5]	5/16 [7.9]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]	3/8 [9.5]
Air Coil Number of rows		3	3	3	3	3	3	3	3	3
							1 - 20 x 20	1 - 20 x 20	1 - 20 x 25	1 - 20 x 25
Filter Standard - 2" [51mm] Pleat	ed MERV11	1 - 16 x 20	1 - 18 x 24	1 - 18 x 32	1 - 18 x 32	1 - 20 x 37	[508 x 508]	[508 x 508]	[508 x 635]	[508 x 635]
Throwaway, in [mm]		[406 x 508]	[457 x 610]	[457 x 813]	[457 x 813]	[686 x 940]	1 - 20 x 22	1 - 20 x 22	1 - 20 x 22	1 - 20 x 22
							[508 x 559]	[508 x 559]	[508 x 559]	[508 x 559]
Weight - Operating, Ib [kg]		165 [75]	200 [91]	300 [136]	315 [143]	368 [167]	403 [183]	418 [190]	453 [205]	478 [217]
Weight - Packaged, lb [kg]		185 [84]	220 [100]	320 [145]	335 [152]	388 [176]	423 [192]	438 [199]	473 [215]	498 [226]

11/13/2017

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.

Contractor:	_ P.O.:
Engineer:	
-	

Project Name: _____ Unit Tag: _

Electrical Data

Single Speed Unit with Variable Speed ECM Motor

Model Rated Voltage Min/Max MCC	RLA	LRA		Pump	Loon	Motor	1 Inch	Min Circ	
			LKA	FLA	FLA	FLA	FLA	Amp	Fuse/ HACR
018 208-230/60/1 187/253 10.4	6.7	33.5	n/a	0.4	5.4	4.0	16.5	18.1	20
022 208-230/60/1 187/253 14.0	9.0	48.0	17.0	0.4	5.4	4.0	18.8	21.0	30
030 208-230/60/1 187/253 20.0	12.8	58.3	21.0	0.4	5.4	4.0	22.6	25.8	35
036 208-230/60/1 187/253 22.0	14.1	73.0	26.0	0.4	5.4	4.0	23.9	27.4	40
036 * 208-230/60/1 187/253 22.0	14.1	73.0	26.0	0.4	5.4	7.0	26.9	30.4	40
042 208-230/60/1 187/253 26.0	16.6	79.0	28.0	0.4	5.4	4.0	26.4	30.6	45
042* 208-230/60/1 187/253 26.0	16.6	79.0	28.0	0.4	5.4	7.0	29.4	33.6	50
048 208-230/60/1 187/253 31.0	19.8	109.0	38.0	0.4	5.4	4.0	29.6	34.6	50
048 * 208-230/60/1 187/253 31.0	19.8	109.0	38.0	0.4	5.4	7.0	32.6	37.6	50
060 208-230/60/1 187/253 41.2	26.4	134.0	47.0	0.4	5.4	7.0	39.2	45.8	70
070 208-230/60/1 187/253 44.2	28.3	178.0	63.0	0.4	5.4	7.0	41.1	48.2	70

* With optional 1 hp ECM motor

** With optional IntelliStart®

Rated voltage of 208/230/60/1

All fuses Class RK-5

HACR circuit breaker in USA only

Single Speed Unit with 5-Speed ECM Motor

Model	Rated	Voltage		Comp	ressor		HWG	Ext	Blower	Total	Min	Max
Model	Voltage	Min/Max	мсс	RLA	LRA	LRA**	Pump FLA	Loop FLA	Motor FLA	Unit FLA	Circ Amp	Fuse/ HACR
022	208-230/60/1	187/253	14.0	9.0	48.0	17.0	0.4	5.4	4.1	18.9	21.1	30
030	208-230/60/1	187/253	20.0	12.8	58.3	21.0	0.4	5.4	4.1	22.7	25.9	35
036	208-230/60/1	187/253	22.0	14.1	73.0	26.0	0.4	5.4	4.1	24.0	27.5	40
042	208-230/60/1	187/253	26.0	16.6	79.0	28.0	0.4	5.4	7.6	30.0	34.2	50
048	208-230/60/1	187/253	31.0	19.8	109.0	38.0	0.4	5.4	7.6	33.2	38.2	50
060	208-230/60/1	187/253	41.2	26.4	134.0	47.0	0.4	5.4	7.6	39.8	46.4	70
070	208-230/60/1	187/253	44.2	28.3	178.0	63.0	0.4	5.4	7.6	41.7	48.8	70

** With optional IntelliStart® Rated voltage of 208/230/60/1 All fuses Class RK-5 HACR circuit breaker in USA only

Single Speed Unit with PSC Motor

		Voltage		Comp	ressor		HWG	Ext	Blower	Total	Min Circ Amp 12.2 15.2 18.2 18.5 23.3 24.6 26.2 26.9 30.1 31.2	Max
Model	Rated Voltage	Min/Max	мсс	RLA	LRA	LRA**	Pump FLA	Loop FLA	Motor FLA	Unit FLA	Circ Amp	Fuse/ HACR
012	208-230/60/1	187/253	7.7	4.9	25.0	n/a	-	5.4	0.6	10.9	12.2	15
018	208-230/60/1	187/253	10.4	6.7	33.5	n/a	0.4	5.4	1.1	13.6	15.2	20
022	208-230/60/1	187/253	14.0	9.0	48.0	17.0	0.4	5.4	1.2	16.0	18.2	25
022*	208-230/60/1	187/253	14.0	9.0	48.0	17.0	0.4	5.4	1.5	16.3	18.5	25
030	208-230/60/1	187/253	20.0	12.8	58.3	21.0	0.4	5.4	1.5	20.1	23.3	35
030*	208-230/60/1	187/253	20.0	12.8	58.3	21.0	0.4	5.4	2.8	21.4	24.6	35
036	208-230/60/1	187/253	22.0	14.1	73.0	26.0	0.4	5.4	2.8	22.7	26.2	40
036*	208-230/60/1	187/253	22.0	14.1	73.0	26.0	0.4	5.4	3.5	23.4	26.9	40
042	208-230/60/1	187/253	26.0	16.6	79.0	28.0	0.4	5.4	3.5	25.9	30.1	45
042*	208-230/60/1	187/253	26.0	16.6	79.0	28.0	0.4	5.4	4.6	27.0	31.2	45
048	208-230/60/1	187/253	31.0	19.8	109.0	38.0	0.4	5.4	3.5	29.1	34.1	50
048*	208-230/60/1	187/253	31.0	19.8	109.0	38.0	0.4	5.4	4.6	30.2	35.2	50
060	208-230/60/1	187/253	41.2	26.4	134.0	47.0	0.4	5.4	5.9	38.1	44.7	70
070	208-230/60/1	187/253	44.2	28.3	158.0	63.0	0.4	5.4	5.9	41.8	49.3	70
* \ A /:+ +												4/6/12

* With optional high static motor

** With optional IntelliStart®

Rated voltage of 208/230/60/1

All fuses Class RK-5

HACR circuit breaker in USA only

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.

Mater Funces. (1. Smarter from the Ground Up™

4/6/12

4/6/12

Contractor:	P.O.:	
Engineer:		

Smarter from the Ground Up"

Project Name:_____

_____Unit Tag: _____

Performance Data cont.

NS042 - Single Speed with Variable Speed or 5-Speed ECM (1350 cfm)

	Flow	w	WPD		HEATING - EAT 70°F								COOLING - EAT 80/67 °F							
EWI ∘E	Rate	DC1	ET (UD	Airflow	нс	Power	HE	LAT	COP	HWC	Airflow	тс	SC	S/T	Power	HR	EED	HWC		
<u> </u>	GPM	P51	FI/HD	CFM	MBtu/h	kW	MBtu/h	°F	COP	Mbtu/h	CFM	Mbtu/h	Mbtu/h	Ratio	kW	Mbtu/h		Mbtu/h		
20	5.0	0.8	1.9		Op	peration	not reco	ommenc	led											
	8.0	2.3	5.3	1150		2.12	10.0	00.7	7 7 2	41	Operation not recommended									
	11.0	4.4	10.3	II50 24.0 2.12 I6.8 89.3 3.32 4.1 1350 24.3 210 171 86.7 3.30 7.7							1									
	50	0.8	18	0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									Opera	tion not	recomm	nended				
30	0.0	0.0	1.0	1150	27.9	2.16	20.6	92.5	3.80	4.3	1150	40.2	24.5	0.61	1.34	44.8	29.9			
	8.0	2.2	5.1	1350	28.3	2.14	21.0	89.4	3.87	3.9	1350	42.1	27.5	0.65	1.42	46.9	29.6			
	11.0	4.7 10.0	10.0	1150	28.3	2.16	21.0	92.8	3.85	4.4	1150	40.6	24.5	0.60	1.31	45.0	31.1			
	11.0	4.5	10.0	1350	28.7	2.14	21.4	89.7	3.93	4.0	1350	42.5	27.5	0.65	1.38	47.2	30.8			
40	5.0	0.8	1.8		Op	peration	not reco	ommenc	led	1			Opera	tion not	recomm	nended				
	8.0	2.1	4.9	1150	31.8	2.24	24.1	95.6	4.15	4.7	1150	41.9	26.2	0.62	1.43	46.8	29.3			
	11.0	4.2	9.7	1350	32.3	2.21	24.7	92.1	4.28	4.3	1350	43.8	29.4	0.67	1.51	48.9	29.0			
				1750	32.4	2.25	24.7	96.1	4.21	4.9	1750	42.3	26.2	0.62	1.39	47.1	30.5			
<u> </u>				1150	34.2	2.21	26.5	97.5	4.33	51	1150	44.2	29.4	0.63	1.47	49.2	26.3	25		
	5.0	0.7	1.7	1350	34.8	2.20	27.2	93.8	4.61	4.7	1350	44.4	30.4	0.68	1.71	50.2	26.0	2.6		
				1150	35.6	2.31	27.7	98.7	4.52	5.3	1150	43.1	27.3	0.63	1.55	48.3	27.9	2.3		
50	8.0	2.1	4.8	1350	36.2	2.26	28.5	94.8	4.71	4.8	1350	44.8	30.7	0.68	1.63	50.4	27.6	2.5		
	11.0	4.1	0.4	1150	36.3	2.32	28.4	99.3	4.58	5.4	1150	43.5	27.3	0.63	1.50	48.6	29.0	2.1		
	11.0	4.1	9.4	1350	37.0	2.27	29.3	95.4	4.78	5.0	1350	45.3	30.7	0.68	1.58	50.7	28.7	2.4		
	50	0.7	17	1150	37.5	2.32	29.6	100.2	4.73	5.7	1150	42.5	27.7	0.65	1.78	48.5	23.8	3.0		
	0.0	0.7		1350	38.3	2.26	30.5	96.2	4.96	5.3	1350	44.1	31.1	0.71	1.87	50.5	23.6	3.2		
60	8.0	2.0	4.6	1150	39.2	2.39	31.0	101.6	4.80	5.9	1150	43.0	28.0	0.65	1.70	48.8	25.4	2.8		
	11.0			1350	40.0	2.32	32.1	97.4	5.06	5.4	1350	44./	31.4	0.70	1.78	50.8	25.1	3.0		
		3.9	.9 9.1	1750	40.1	2.41	31.9	001	4.87	6.I	1750	45.4	28.0	0.64	1.65	49.1	26.4	2.6		
				1150	40.7	2.34	32.0	102.8	<u> </u>	5.0	1150	43.1	28.6	0.70	1.73	<u> </u>	20.1	2.9		
	5.0	0.7	1.6	1350	416	2.40	33.7	98.6	5.26	6.0	1350	44.2	321	0.07	2.06	51.2	21.0	4.0		
				1150	42.7	2.48	34.2	104.4	5.04	6.6	1150	43.3	28.9	0.67	1.87	49.7	23.1	3.5		
70	8.0	1.9	4.5	1350	43.7	2.39	35.5	100.0	5.36	6.1	1350	44.9	32.5	0.72	1.96	51.5	22.9	3.8		
	11.0	7.0	7.0 0.0	1150	43.8	2.51	35.2	105.2	5.11	6.8	1150	43.7	28.9	0.66	1.82	49.9	24.1	3.3		
	11.0	3.8	8.8	1350	44.9	2.42	36.6	100.8	5.45	6.3	1350	45.3	32.5	0.72	1.90	51.8	23.8	3.6		
	5.0	0.7	16	1150	43.7	2.44	35.4	105.2	5.26	7.2	1150	41.0	27.9	0.68	2.19	48.5	18.7	4.8		
		0.7	1.0	1350	44.9	2.34	36.9	100.8	5.63	6.7	1350	42.4	31.4	0.74	2.29	50.2	18.5	5.1		
80	8.0	1.9	4.3	1150	46.0	2.54	37.4	107.0	5.32	7.5	1150	41.8	28.2	0.68	2.08	48.9	20.1	4.5		
	11.0			1350	47.3	2.42	39.0	102.4	5.72	6.9	1350	43.2	31.7	0.73	2.17	50.6	19.9	4.8		
		3.7	8.5	1150	47.3	2.57	38.6	108.1	5.39	/./	1150	42.2	28.2	0.67	2.02	49.1	20.9	4.1		
				1350	48.7	2.46	40.3	103.4	5.82	7.I 0.1	1350	43.6	31./	0.73	2.11	50.8	20.7	4.6		
	5.0 8.0	0.7	1.5	1350	40.7	2.40	30.2	107.0	5.51	0.1	1350	401	30.5	0.70	2.45	47.2	15.9	6.0		
				1150	49.2	2.57	40.4	102.5	5.55	8.4	1150	39.7	27.4	0.70	2.33	47.6	171	56		
90		1.8	4.2	1350	50.8	2.47	42.4	104.8	6.03	7.8	1350	40.9	30.8	0.75	2.41	49.1	17.0	6.1		
	11.0 7	7.5		1150	50.8	2.64	41.8	110.9	5.63	8.6	1150	40.1	27.4	0.68	2.25	47.7	17.8	5.2		
	11.0	3.5	8.2	1350	52.4	2.51	43.9	106.0	6.14	8.0	1350	41.3	30.8	0.75	2.34	49.3	17.6	5.8		
	5.0	0.6	1.5								Operation not recommended									
	8.0	1.7	4.0 7.9								1150	38.2	26.9	0.70	2.58	47.0	14.8	6.9		
100	0.0	1.7									1350	39.2	30.2	0.77	2.68	48.4	14.6	7.5		
	11.0	3.4									1150	38.5	26.9	0.70	2.50	47.1	15.4	6.4		
		0.0	1.4	-							1350	39.6	30.2	0.76	2.60	48.5	15.2	/.2		
	5.0	0.6	1.4		Operation not recommended								Operat		200		12.1	85		
110	8.0	1.7	3.9										24.9	0.71	2.00	44.0	12.1	9.5		
					OF.	Station	notrect	, mineric			1150	351	24.9	0.71	2.79	44.7	12.0	7.9		
	11.0	3.3	7.6		1								27.9	0.77	2.89	45.9	12.5	8.8		
	5.0	0.6	1.3	1								Operation not recommended								
		1.0	77	1									1150 32.8 24.6 0.75 3.20 43.7 10.2 10.3							
120	8.0	1.6	5./								1350	33.5	27.6	0.82	3.31	44.8	10.1	11.1		
	11.0	3.2	7.3								1150	33.1	24.6	0.74	3.11	43.7	10.7	9.5		
	1.0										1350	33.9	27.6	0.81	3.21	44.8	10.6	10.6		

2/10/12

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.

Contractor:	P.O.:

Smarter from the Ground Up"

Engineer:__

Project Name: ____

_____Unit Tag: _____

Performance Data cont.

NS048 - Single Speed with Variable Speed or 5-Speed ECM (1500 cfm)

	Flow	WPD		HEATING - EAT 70°F								COOLING - EAT 80/67 °F							
°F	Rate GPM	PSI	FT/HD	Airflow	HC MBtu/b	Power	HE MBtu/b	LAT ∘E	СОР	HWC	Airflow	TC Mbtu/b	SC Mbtu/b	S/T Patio	Power	HR Mbtu/b	EER	HWC	
	6.0	1.1	2.6		inibitu/ii	RVV	in Dia/II		1	iniota/ii		Pible/II	ribta/ii	Ratio	RVV	Inibita/II		initia initia	
20	9.0	2.3	5.4		Op	peration	not reco	ommenc	led				0						
	10.0	10	0.0	1300	31.6	2.84	21.9	92.5	3.26	5.3	1		Opera	tion not	recomm	nended			
	12.0	4.0	9.2	1500	1500 32.0 2.82 22.4 89.7 3.33 4.8														
	6.0	1.1	2.5		Op	peration	not reco	ommenc	led				Opera	tion not	recomm	nended			
30	0.0	27	57	1300	36.3	2.92	26.3	95.8	3.64	5.6	1300	48.2	29.6	0.61	1.58	53.6	30.5		
	12.0	2.5	5.5	1500	36.7	2.90	26.8	92.6	3.71	5.2	1500	50.5	33.3	0.66	1.67	56.2	30.2		
		39	90	1300	36.8	2.93	26.8	96.2	3.68	5.8	1300	48.7	29.6	0.61	1.53	53.9	31.8		
	12.0	0.0	0.0	1500	37.2	2.90	27.3	93.0	3.76	5.3	1500	51.0	33.3	0.65	1.62	56.5	31.4		
40	6.0	1.1	2.5		Op	peration	not reco	ommenc	led				Opera	tion not	recomm	nended		1	
	9.0	2.2	5.1	1300	41.7	3.05	31.3	99.7	4.00	6.2	1300	50.1	31.2	0.62	1.74	56.0	28.9		
	12.0	3.8	8.7	1500	42.2	3.00	32.0	96.1	4.13	5.7	1500	52.3	35.1	0.67	1.83	58.6	28.6		
				1500	42.4	3.06	31.9	100.2	4.06	6.4	1500	50.6	31.2	0.62	1.68	56.4	30.0		
				1700	45.0	3.01	741	96.5	4.19	5.8	1700	52.9	35.1	0.66	1.78	58.9	29.7	20	
	6.0	1.0	2.4	1500	44./	3.09	34.I ZE 1		4.24	62	1500	57.Z	32.5	0.60	2.02	50.1	∠3.3 2⊑1	∠.9 71	
				1300	45.4	3.02	35.7	1031	4.40	6.9	1300	517	30.5	0.08	193	58.3	25.1	27	
50	9.0	2.1	4.9	1500	40.3	3.08	36.7	99.2	4.52	6.4	1500	53.9	36.8	0.68	2.03	60.8	26.6	2.7	
			8.4	1300	47.4	318	36.6	103.8	4.37	72	1300	52.2	32.8	0.63	187	58.6	27.9	2.5	
	12.0	3.7		1500	48.2	3.10	37.7	99.8	4.56	6.5	1500	54.4	36.8	0.68	1.97	61.1	27.6	2.8	
				1300	49.1	3.18	38.2	105.0	4.52	7.6	1300	50.0	32.1	0.64	2.24	57.6	22.3	3.5	
60	6.0	1.0	0 2.3	1500	50.0	3.10	39.5	100.9	4.74	7.0	1500	51.9	36.0	0.69	2.35	59.9	22.1	3.7	
		0.1	10	1300	51.3	3.28	40.1	106.5	4.59	7.8	1300	50.6	32.4	0.64	2.13	57.9	23.7	3.3	
	9.0	2.1	4.8	1500	52.3	3.18	41.5	102.3	4.83	7.2	1500	52.6	36.4	0.69	2.24	60.2	23.5	3.6	
	12.0	7 5	E 0.2	1300	52.5	3.31	41.2	107.4	4.65	8.0	1300	51.1	32.4	0.63	2.07	58.2	24.7	3.0	
	12.0	3.5	8.2	1500	53.6	3.20	42.7	103.1	4.91	7.4	1500	53.1	36.4	0.69	2.17	60.5	24.4	3.4	
70	60	60 10	22	1300	53.6	3.29	42.4	108.2	4.78	8.5	1300	49.7	32.4	0.65	2.51	58.3	19.8	4.4	
	0.0	1.0	2.2	1500	54.7	3.17	43.9	103.8	5.05	7.9	1500	51.5	36.5	0.71	2.63	60.5	19.6	4.7	
	90	2.0	4.6	1300	56.1	3.40	44.5	110.0	4.84	8.8	1300	50.5	32.8	0.65	2.38	58.6	21.2	4.1	
	0.0			1500	57.4	3.27	46.3	105.5	5.14	8.1	1500	52.3	36.8	0.70	2.50	60.9	21.0	4.5	
	12.0	3.4	7.9	1300	57.6	3.44	45.8	111.0	4.91	9.0	1300	51.0	32.8	0.64	2.31	58.9	22.0	3.8	
				1500	59.0	3.31	47.7	106.4	5.22	8.3	1500	52.9	36.8	0.70	2.42	61.1	21.8	4.2	
	6.0	0.9	2.1	1300	57.1	3.37	45.6	10.7	4.97	9.6	1300	4/./	31.7	0.67	2.81	57.3	17.0	5.6	
				1700	58.6	3.23	47.5	106.2	5.32	0.8	1700	49.5 49.5	35.0	0.72	2.94	59.5	10.8	5.9	
80	9.0	1.9	4.5	1500	61.7	3.50	40.1 50.7	1001	5.03	9.0	1500	40.5	32.0	0.00	2.00	50.7	10.2	5.2	
	12.0			1300	61.8	3.35	49.7	114.0	5.40	10.1	1300	49.0	30.0	0.72	2.78	578	19.0	4.8	
		3.3	7.6	1500	63.5	3.39	51.9	109.2	5.49	94	1500	50.7	36.0	0.00	2.00	59.9	18.8	5.4	
	6.0 (9.0 ·	0.9	2.1 4.3	1300	60.7	3.45	48.9	113.2	5.16	10.7	1300	44.5	30.3	0.68	3.14	55.2	14.2	7.0	
				1500	62.4	3.29	51.2	108.5	5.56	9.9	1500	45.9	34.0	0.74	3.27	57.0	14.0	7.4	
				1300	64.1	3.61	51.7	115.6	5.20	11.1	1300	45.4	30.6	0.67	2.97	55.5	15.3	6.5	
90		1.9		1500	66.0	3.43	54.3	110.7	5.64	10.2	1500	46.8	34.3	0.73	3.09	57.4	15.1	7.1	
	12.0 7.	7.2	74	1300	66.1	3.67	53.5	117.0	5.27	11.4	1300	45.9	30.6	0.67	2.88	55.7	15.9	6.1	
	12.0	3.2	7.4	1500	68.1	3.48	56.2	112.0	5.74	10.6	1500	47.3	34.3	0.73	3.00	57.5	15.7	6.7	
	6.0	0.9	2.0	Operation not re									recomm	commended					
	90	18	42								1300	43.9	30.1	0.69	3.33	55.2	13.2	8.1	
100	0.0										1500	45.1	33.9	0.75	3.46	56.9	13.0	8.8	
	12.0	31	71								1300	44.3	30.1	0.68	3.23	55.3	13.7	7.5	
											1500	45.6	33.9	0.74	3.36	57.0	13.6	8.4	
	6.0	0.8	1.9								1700	76 7	Operat	tion not	recomm	nended	10 -	0.0	
110	9.0	1.7	4.0		On any time and								28.0	0./1	3./1	52.3	10.7	9.9	
				Operation not recommended							1500	40.7	31.4	0.77	3.84	53.8	10.6	10.8	
	12.0	3.0	6.8										28.U	0.70	3.60	52.3	11.0	9.2	
	60	0.0	10										1500 41.1 51.4 0.77 5.75 53.8 11.0 10.2						
	0.0	0.0	1.0								1300	376	27.4	0.73	1 17	517	0.1	12.0	
120	9.0	1.7	3.8								1500	37.0	30.8	0.73	4.13	57.0	9.0	13.0	
												37.9	27.4	0.72	4.01	51.6	9.5	111	
	12.0	2.8	6.6										30.8	0.79	4.15	53.0	9.4	12.4	

2/10/12

WaterFurnace works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice. Please contact WaterFurnace at 1-888-929-2837 for latest design and specifications. Purchaser's approval of this data set signifies that the equipment is acceptable under the provisions of the job specification. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely WaterFurnace's opinion or commendation of its products. The latest version of this document is available at www.waterfurnace.com.